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Abstract

The proportional hazards (PH) model and the accelerated failure time (AFT) model

are the two most popular survival models in fitting the right-censored data. The AFT

model is a useful alternative to the PH model, particularly when the PH assumption

is not satisfied. Usually, the linear association is assumed with logarithm of survival

time in the AFT model. However, the nonlinear association may exist in practice.

The first project aims to handle the nonlinear component in the AFT model, which is

called the semiparametric additive partial accelerated failure time (AP-AFT) model.

Two estimation methods based on the rank-smooth method and the profile likelihood

method are proposed, along with the variance estimation.

The other interest situation in practice is heterogeneity among subjects, which

may lead to the different baseline distribution of patients with different characteristics.

The AFT mixture model with latent subgroup is investigated in the second project.

The semiparametric estimation method is improved by the expectation-maximization

(EM) algorithm with the profile likelihood estimation method.

In practice, there exists the cases where either the PH model or the AFT model is

appropriate to capture the data characteristic. The extended hazards (EH) model is

developed to capture more general forms in survival data, which includes the PH and

AFT models as its special cases. With the development of medical research, more

and more diseases can be cured. Thus, patients may not die from the disease even

with enough follow up time. Mixture cure model is developed to handle the survival

data with possible cure fraction. The concepts of mixture model have been adapted

to the PH and AFT models. However, there are limited studies on its extension to
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the EH model.

The third and fourth projects aim to estimate the EH and EH mixture cure

models with the monotone splines. The advantage of the monotone spline is that

it can capture any shape of the survival function with the appropriate knots and

degrees. The estimated survival curve is parametric, and the inference is easy.

All the above projects are studied through the comprehensive simulation studies.

The appropriate data are used for illustration purposes. For example , Mayo primary

biliary cirrhosis (PBC) data is used in the AP-AFT model, pregnancy data is applied

in the AFT mixture model, Stanford heart transplant data is used in the EH model,

the melanoma data from the ECOG phase III clinical trial E1684, and the leukemia

data from bone marrow transplant study are used in the EH mixture cure model.
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Chapter 1

Introduction

1.1 Standard Survival Model

Survival data is commonly seen in many areas, such as epidemiological studies, clinical

trails and biomedical science. Survival models are developed to handle survival data,

and the most popular survival models are the proportional hazards (PH) model [13]

and the accelerated failure time (AFT) model [7,60]. One of the special characteristics

in survival data is censoring, which happens when the information about the survival

time is insufficient. For example, during the study, the patients do not experience the

interested event, such as death, or they are loss to follow up. Therefore, the survival

time of these patients is not complete, and what we observe is the last observed time

of patients, which is referred to as censoring. The right censoring is most commonly

seen in survival analysis. The presence of censoring time in the survival data leads

to the investigations on the estimation methods for survival models. We will review

the PH model and the AFT model in this section.

PH Model

The PH model aims to directly evaluate the covariates effects on the hazard function

and assumes the regression structure on the logarithm of hazard function. The PH

model can be expressed as

λT |Z(t) = λ0(t)eα′Z (1.1)

1
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where λ0(t) is the baseline hazard function which is unspecified, λT |Z(t) is the haz-

ard function, Z is the covariates, and α is a vector of unknown parameters. The

corresponding survival function is as follows:

ST |Z(t) = S0(t)exp(α′Z) (1.2)

where S0(t) = e−
∫ t

0 λ0(u)du is the survival function of baseline distribution.

The most important indicator to evaluate the effects of the covariates is the hazard

ratio (HR), which can be defined as the ratio of the hazard rates related to the two

levels of covariates. The estimated HR of two individuals with different covariates Z

and Z∗ can be described as

ĤR = λT |Z∗(t)
λT |Z(t) = λ0(t)eα̂′Z∗

λ0(t)eα̂′Z = eα̂
′(Z∗−Z) (1.3)

Based on the estimated parameters α̂, and the known covariates: Z and Z∗, the

estimated HR is a constant independent on time. If ĤR > 1, it means a group

under condition of Z∗ has a higher chance to experience event than another group

under condition of Z. If ĤR = 1, it means a group under condition of Z∗ has an

equivalent chance to experience event, compared to another group under condition

of Z. If ĤR < 1, it means a group under condition of Z∗ has a lower chance to

experience event than another group under condition ofZ. For example, we define the

survival time Ti as the time to death of liver cancer patients, and we want to evaluate

whether the surgery treatment Zi has the significant effects on the death of patients.

We assume that the estimated value of parameter α is -0.6, and its corresponding P

value is less than 0.05. Zi = 1 means the patients received the surgery treatment, and

Zi = 0 means they did not receive any surgery treatment. Based on these conditions,

ĤR related to surgery treatment can be calculated as e−0.6×(1−0) = e−0.6 = 0.5488 <

1, which means that patients receiving surgery treatment have lower risk of death

than those without surgery treatment.

2
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Estimation methods for the PH model have been widely developed. Lin and Wei

[32] derived the maximum partial likelihood estimators, proposed robust covariance

matrix estimators, and performed the robust score tests for the PH model. Schemper

and Smith [50] proposed the probability imputation technique to handle the missing

values. Gray [22] developed flexible methods by using splines and applied penalized

partial likelihood to estimate the parameters. Most statistical software packages,

such as “coxph” in R and “Proc Phreg” in SAS, have been developed for the PH

model, and they have been widely used in dealing with survival data.

AFT Model

Serving as an alternative survival model to the PH model, the AFT model is proposed

to measure the covariates effects on the survival time directly. Let T be the failure

time, the AFT model can be written as

log(T ) = β′Z + ε (1.4)

where β is p-dimensional unknown parameters, Z denotes the p×1 possible covariates,

and ε is a random error independent of Z. Without the distribution assumption of ε,

model (1.4) is called as the semiparametric AFT model. The corresponding survival

function of failure time T can be written as

S(t|Z) = S0(teβ′Z) (1.5)

where S0(t) is the baseline survival function of t.

Different from HR in the PH model, the time ratio (TR) of the two groups are often

used to evaluate the effects of the covariates in the AFT model. After exponentiation

transformation of equation (1.4), we can obtain the following equation

T = eβ
′Zeε (1.6)

3
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Given Z and Z∗, the estimated TR of the two groups can be expressed as

T̂R = T ∗

T
= eβ̂

′Z∗eε

eβ̂′Zeε
= eβ̂

′(Z∗−Z) (1.7)

Similar to ĤR, we can also compare the effects of two covariates on the survival time

based on the value of T̂R. If T̂R > 1, it means a group under condition of Z∗ has

a longer survival time to interested event than another group under condition of Z.

If T̂R = 1, it means a group under condition of Z∗ has an equivalent survival time

to interested event, compared to another group under condition of Z. If T̂R < 1, it

means a group under condition of Z∗ has a shorter survival time to interested event

than another group under condition of Z. For example, we define the survival time

Ti as the time to death of liver cancer patients, and we want to evaluate whether the

surgery treatment Zi has the significant effects on prolonging the life of patients. We

assume that the estimated value of parameter β is 0.8, and its corresponding P value

is less than 0.05. Zi = 1 means the patients received the surgery treatment, and

Zi = 0 means they did not receive any surgery treatment. Based on these conditions,

T̂R related to surgery treatment can be calculated as e0.8×(1−0) = e0.8 = 2.2255 > 1,

which means that patients receiving surgery treatment have longer survival time

than those without surgery treatment. That is to say, the surgery treatment has

successfully prolonged the life of liver cancer patients.

The estimation methods for the semiparametric AFT model have been widely

discussed in literature, which includes the least square method, the rank estimation

method, the induced smooth estimation method, and the profile likelihood estimation

method.

The least square method was first proposed by Buckley and James [7]. The

least square method using the Kaplan-Meier weights was further investigated by

Stute and Wang [51]. On the basis of the least square method, Huang, Ma and Xie

[24] used the least absolute shrinkage and selection operator method, as well as the

threshold-gradient-directed regularization method to estimate the parameters. They

4
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also applied a bootstrap approach to estimate the variance of estimated parameters.

Jin, Lin and Ying [26] utilized the Gehan rank estimator as its initial values to improve

the least square method.

The rank estimation method is another important estimation method in the AFT

model. Prentice [45] developed linear rank statistics for testing the regression coeffi-

cients, and proved that the log rank test was the asymptotically fully efficient rank

test. Tsiatis [56] proposed the rank estimation method. The equivalence of the rank

estimation method and the least square method were given by Ritov [48]. In order to

overcome the difficulties of variance estimation when censoring information existed,

Wei et al. [61] proposed a simple rank estimation method through considering nui-

sance parameters. Without assuming any parametric form for the distribution of the

error terms in the AFT model, Lai et al. [30] proposed a rank estimation method

for the regression analysis by use of martingale theory and a tightness lemma for

stochastic integrals of multiparameter empirical processes. Yang et al. [67] devel-

oped weighted integrals of the log-rank estimating function for estimating the pa-

rameters in the AFT model, and their asymptotic covariance matrices of estimators

could be estimated reliably and efficiently. Jin, Lin, Wei and Ying [25] simplified

the estimation procedure of the rank estimation method based on the Gehan-type

estimator, and extended it to other weight functions. Additionally, they introduced

the resampling technique to estimate the variance of estimators.

In order to handle the estimation difficulties caused by the non-smoothness, Brown

et al. [5, 6] proposed the induced smoothing to the Gehan-Wilcoxon weighted rank

regression, which could obtain the variance directly. Zeng and Lin [70] proposed

a profile likelihood method by approximating the profile likelihood function with a

kernel function. The variance of estimated parameters can be easily obtained through

the inverse of the second derivative of the kernel-smoothed profile likelihood function.

In recent years, statistical software packages, such as “lss” in R, have also been

5
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developed for the AFT model. These software packages have provided effective help

for researchers to deal with survival data.

1.2 Standard Cure Model

In the PH model and the AFT model, we often assume that given long enough follow-

up time, all patients in the studies will finally experience the interesting event, such

as death or relapse of certain disease. However, along with the medical research

development, not all patients will experience the event, since these patients may be

cured. Since diseases can be potentially cured, this motivates researchers to develop

more specific models to evaluate these interesting problems: what is the proportion

of patients who may be cured? What are the risk factors which can influence the cure

rate of cured patients and the failure time of uncured patients? Fortunately, Boag

[4], and Berkson and Gage [3] have successfully developed the mixture cure model,

which can be used to evaluate the cure rate for cured patients and the failure time

for uncured patients. We will review the mixture cure model, the semiparametric PH

mixture cure model and the semiparametric AFT mixture cure model in this section.

Mixture Cure Model

Let T be the survival time, Z be p-dimensional vector of covariates, and X be

another p-dimensional vector of covariates independent from Z, and f(t|X,Z) and

S(t|X,Z) be the probability density function and the survival function of failure time

T , respectively. Then the mixture cure model proposed by Boag [4], and Berkson and

Gage [3] can be expressed as

S(t|X,Z) = 1− π(X) + π(X)Su(t|Z) (1.8)

where π(X), which is called “incidence”, is the proportion of uncured patients de-

pending on X; Su(t|Z), which is called “latency”, is the survival functions of failure

6
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time distribution of uncured patients depending on Z.

Denote the density function of failure time distribution of uncured patients as

fu(t|Z). Let δi be an indicator of censoring with δi = 1 for the uncensored time

and δi = 0 for the censored time. Given the observed value (ti, δi,Zi,Xi) for the ith

subject, i = 1, 2, 3, ..., n, the likelihood function can be written as

lo ∝
n∏
i=1

{
π(Xi)fu(ti|Zi)

}δi{1− π(Xi) + π(Xi)Su(ti|Zi)
}1−δi (1.9)

Therefore, specifying the distribution of either fu(t|Z) or Su(t|Z) in equation (1.9)

can lead to the parametric mixture model or the semiparametric mixture model.

Many estimation methods have been developed for the parametric mixture cure

model. Farewell [19] employed the Weibull regression for the latency part and the

logistic regression for the incidence part. Yamaguchi [66] utilized the extended family

of generalized Gamma distribution for the latency, and applied the logistic function

for the regression model of the surviving fraction. Peng [44] applied the generalized

F distribution to a mixture model for cure rate estimation, since the generalized F

mixture model could provide great flexibility to model the survival time distribution

of uncured patients, as well as covariate effects on the cure rate.

The disadvantage of the parametric mixture cure model is that unsuitably strong

distributional assumptions are involved. In order to improve this disadvantage, more

and more researchers have committed to develop semiparametric mixture cure models

and their estimation methods. Most of them have been focusing on the two impor-

tant semiparametric mixture cure models: the PH mixture cure model and the AFT

mixture cure model.

Semiparametric PH Mixture Cure Model

If the latency part of the mixture cure model (1.8) is modelled with PH model,

the mixture cure model is called PH mixture cure model. The incidence part of

7
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PH mixture cure model is usually modelled with logit link function, which can be

expressed as

π(X) = ed
′X

1 + ed′X
(1.10)

where d is a row vector of unknown parameters, X is the vector of covariates. Other

link functions are also used for the incidence part of the PH mixture cure model,

including probit link function, which can be expressed as

π(X) = Φ(d′X) (1.11)

where Φ(·) is the cumulative distribution function of a standard normal distribution

and complementary log-log link function, which is

π(X) = 1− exp(−ed′X) (1.12)

The latency component can be described with PH model as follows:

λu(t|Z) = λ0(t)eα′Z (1.13)

where λ0(t) is the baseline hazard function of uncured patients. Based on the PH

assumption of the latency part, the survival function of uncured patients can be

expressed

Su(t|Z) = S0(t)exp(α′Z) (1.14)

where S0(t) is the baseline survival function of uncured patients. Until now, many

discussions have been focused on developing the estimation methods for the semi-

parametric PH mixture cure model [18,29,43,52,53].

Semiparametric AFT Mixture Cure Model

If the latency part of the mixture cure model is modelled with AFT model, the

mixture cure model is called AFT mixture cure model. AFT mixture cure model is

an important alternative mixture cure model for the PH mixture cure model. Similar

8
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to the PH mixture cure model, the incidence part of AFT mixture cure model is also

modelled with logit link function, probit link function, and complementary log-log

link function. The latency component can be described with AFT model as follows:

log(T ) = β′Z + ε (1.15)

where β is a p-dimensional unknown parameters, and the distribution of ε is unknown.

Then the survival function of uncured patients can be expressed

Su(t|Z) = S0(teβ′Z) (1.16)

Similar to the PH mixture cure model, many estimation methods have been discussed

and developed for the semiparametric AFT mixture cure model [31,35,64,65,71].

1.3 Outline of Dissertation

In Chapter 2, we focus on the AP-AFT model, which incorporates multiple nonlinear

structures of covariates. We propose both rank-smooth estimation method and the

profile likelihood estimation method for the AP-AFT model. We also conduct sev-

eral simulation studies to evaluate the performance of our two proposed estimation

methods. An example is given to illustrate the usage of our two proposed estimation

methods.

In Chapter 3, we propose a profile likelihood based estimation method for the

AFT mixture model with latent subgroups. That is, given the observed subgroup

information for the subjects, we develop an E-step to evaluate the conditional prob-

ability of subgroup membership in the control set. Then we incorporate the profile

likelihood estimation method in the maximization step to maximize the derived like-

lihood functions for the observed data. We also provide simulation studies results

and apply our proposed estimation method to the pregnancy data.

In Chapter 4, we develop an alternative estimation method for the EH model,

which has the merits of both the PH model and the AFT model. The proposed esti-

9
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mation method aims to use monotone splines of Ramsay to approximate the baseline

hazard functions in the EH model, and apply resampling techniques to evaluate the

variance of parameters. Simulation studies are conducted to investigate the effective-

ness of our proposed estimation method, and a real data analysis is also provided for

illustration.

In Chapter 5, we propose an EH mixture cure model, which incorporates a logistic

regression for the incidence part and an EH model for the latency part of mixture cure

model. Based on monotone splines of Ramsay, we also propose an efficient estimation

method for the EH mixture cure model. Simulation studies based on the proposed

estimation method and application of proposed estimation method to the real data

will be discussed.

We summarize our conclusions of this thesis and discuss the future work in Chapter

6.

10
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Chapter 2

Semiparametric Estimations for Additive

Partial Accelerated Failure Time Models

2.1 Abstract

The semiparametric additive partial accelerated failure time model is more flexible

in use than the semiparametric accelerated failure time partial linear model, since

it incorporates multiple nonlinear structures of covariates. Two estimation methods

based on the rank-smooth method or the profile likelihood method are proposed.

In the rank smooth method, the induced smooth technique is used to estimate the

variance of parameters; while in the profile likelihood, the variance is approximately

calculated by the secondary derivative. The simulation study shows that both ap-

proaches can produce the valid estimations. The proposed estimation methods are

illustrated by the study on primary biliary cirrhosis of the liver.

2.2 Introduction

The AFT model, which regresses the logarithm of the survival time, has been popu-

larly applied in survival analysis. In order to make the AFT model be easily used in

practice, there are many discussions in its estimation procedures. Tsiatis [56] utilized

the linear rank estimate technique to estimate the parameters of the AFT model,

and showed that the estimates are approximately fully efficient with the appropriate

weight function. Since then, many discussions are focused on the improvement of the

accuracy of the rank estimation such as [30, 61, 67]. Jin et al. [25] developed rank-
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based monotone estimating functions for the AFT model, and used the resampling

technique to estimate the covariance matrix of parameters. However, the resampling

technique is time consuming and Brown et al. [5, 6] applied an induced smoothing

technique to handle the estimation difficulties due to the non-smoothness. At the

same time, the profile likelihood estimation was proposed by Zeng et al. [70], which

is easy to estimate the variance of parameters through the inverse of the second

derivative of the kernel-smoothed profile likelihood function.

Partial linear models are widely used in regression in order to model the non-

linear association between the covariate and response variable, especially when the

dependence of the response on one of the covariates is not certain. The AFT partial

linear model (AFT-PLM), which incorporated the nonlinear component into the AFT

model was discussed in [10, 72]. Chen et al. [10] used the rank estimation method

for the AFT-PLM based on stratifying the nonlinear covaraite, which ignored the

nonlinear structure in estimation; Zou et al. [72] developed a rank-like estimation

method for the AFT-PLM based on the penalized method which can estimate the

linear and nonlinear effects simultaneously. The resampling technique was adapted in

its variance estimation. Both discussions were limited to one nonlinear component,

therefore, when there is more than one nonlinear component, the potential extension

and performances need to be investigated.

In this chapter, we extend the partial linear model to the model with more than

one nonlinear component, which is called the additive partial accelerated failure time

(AP-AFT) model. In order to overcome time-consuming issues in the resampling

approach, the induced smoothing technique is applied to the rank estimation ap-

proach. At the same time, we also extend the profile likelihood estimation method

to the AP-AFT model. The comparison between these two approaches is evaluated

through comprehensive simulation studies. The remaining sections in this chapter are

organized as follows: Section 2.3 describes the AP-AFT model. Section 2.4 outlines
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the rank-smooth estimation method and the profile likelihood method. Simulation

studies are conducted in Section 2.5 to investigate the performance of the proposed

methods. Real data analysis about primary biliary cirrhosis of the liver is discussed

in Section 2.6. Finally, discussion and conclusion are made in Section 2.7.

2.3 Additive Partial Accelerated Failure Time Model

Let T be the survival time,X be the p-dimensional vector of covariates and Z1, . . . , ZL

be L one-dimensional covariates. The AP-AFT model can be described as:

log(T ) = β0 +X ′β +
L∑
l=1

gl(Zl) + ε, (2.1)

where β is the p-dimensional vector of regression coefficient. The AP-AFT model

assumes that the covariate Zl is related with log(T ) by a centered nonparametric

function gl(·), l = 1, . . . , L, and ε’s are independent error terms with a common

distribution.

Similar to the definition in Yu and Ruppert [69], we approximate gl(·) by centered

rlth-degree spline function with lS fixed knots kl1 , . . . , klS for l = 1, . . . , L under the

working assumption. Then we have

gl(zl) = π′l(zl)αl, l = 1, . . . , L

where πl(zl) = (B1(zl), . . . , BNl(zl))′ is a vector of rlth-degree B-spline basis functions

and αl ∈ RNl is the spline coefficient vector.

Replacing the nonparametric function gl(zl) by π′l(zl)αl, l = 1, . . . , L, the AP-

AFT model (2.1) can be rewritten as

log(Ti) = X ′iβ +
L∑
l=1
π′l(zli)αl + εi = D′iθ + εi (2.2)

where Di = (X ′i,π′1(z1i), . . . ,π′L(zLi))′ and θ = (β′,α′1, . . . ,α′L)′.
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2.4 Estimation Procedure

Let (Ti, δi,Xi, Z1i, . . . , ZLi) denote the observed dataset for the ith individual, i =

1, . . . , n, where Ti is the observed survival time, δi is a censoring indicator with δi = 1

for the uncensored time and δi = 0 for the censored one. It is common to assume the

censoring is independent and noninformative about the parameters of interest.

Rank-smooth estimation method

The Gehan-rank estimation method proposed by Jin et al. [25] can be expressed as:

UG(θ) = 1
n

n∑
i=1

n∑
j=1

δi(Di −Dj)I(ej(θ) ≥ ei(θ)),

where ei(θ) = log(Ti)−D′iθ and I(·) is an indicator function. The estimating equation

is the gradient of the convex function

LG(θ) = 1
n

n∑
i=1

n∑
j=1

δi(ei(θ)− ej(θ))I(ej(θ) ≥ ei(θ)), (2.3)

The minimization of LG(θ) with respect to θ can be carried out by the linear pro-

gramming method.

To achieve a smooth fit, a penalty term is added into the loss function (2.3). The

penalized loss function can be defined as

L∗G(θ) = 1
n

n∑
i=1

n∑
j=1

δi(ei(θ)− ej(θ))I(ej(θ) ≥ ei(θ)) + 1
2

L∑
l=1

λlα
′
lΨlαl (2.4)

where, for l = 1, . . . , L, λl is the smoothing parameter of the function gl(·), and Ψl is
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a Nl ×Nl matrix. According to Eilers and Marx [17], Ψl is a belt-shaped matrix as

Ψl =



1 −1 0 · · · 0 0 0

−1 2 −1 · · · 0 0 0

0 −1 2 · · · 0 0 0

· · · · · · · · ·

0 0 0 · · · 2 −1 0

0 0 0 · · · −1 2 −1

0 0 0 · · · 0 −1 1


Nl×Nl

.

The corresponding penalized Gehan-rank estimating equation is

U ∗G(θ) = 1
n

n∑
i=1

n∑
j=1

δi(Di −Dj)I(ej(θ) ≥ ei(θ)) + (0, (λ1Ψ1α1)′, · · · , (λLΨLαL)′)′

where 0 is a p× p zero matrix.

The estimator θ̂ of θ0 can be obtained by either minimizing L∗G(θ) or solving

U ∗G(θ) = 0, equivalently. We utilize the Nelder-Mead algorithm in obtaining the

estimator, which is an option in “optim” function in R. The initial value is specified

by the linear regression with respect toDi. Then, ĝl(zl) can be estimated by π′l(zl)α̂l.

Assuming λl = op( 1√
n
), l = 1, . . . , L, according to the general asymptotic theory for

the rank estimator, the random vector
√
n(θ̂ − θ) is asymptotically distributed as a

zero-mean normal.

Choice of smoothing parameters

Selecting suitable values for the smoothing parameters λl is crucial to good curve

fitting. We define the generalized cross-validation (GCV) score [27,46] as

GCV(λ1, . . . , λL) = LG(θ)
(1− df/n)2 , (2.5)

where df = trace{H(λ1, . . . , λL)} is the effective degree of freedom, andH(λ1, . . . , λL)

=
(
∂2LG(θ)
∂θ∂θ′

+ Ψ
)−1 ∂2LG(θ)

∂θ∂θ′
. Here, Ψ is a (p+∑L

l=1Nl)×(p+∑L
l=1Nl) penalized matrix
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defined as 

0

λ1Ψ1

. . .

λLΨL


and all other elements are zeros. The best combination of smoothing parameters

λ1, . . . , λL will be the minimizer of the GCV score, which is

(λ̂1, . . . , λ̂L) = argmin
(λ1,...,λL)

GCV(λ1, . . . , λL).

In practice, the minimization can be carried out by grid search over a sequence of

possible (λ1, . . . , λL) values. Similar to Yu and Ruppert [69], we select λl over 11 grid

points ranging equally from 10−6 to 107 in our study.

Variance estimation

Based on Brown et al. [5, 6], we add a perturbation
√

ΣR

n
Z to θ, where Z is a

continuous, mean zero normal random vector independent of all of the data. The

smoothing rank estimating function of θ can be naturally defined as Ũ(θ,ΣR) =

E{UG(θ+
√

ΣR

n
Z)}, which is the expectation of the nonsmoothed estimating function

with respect to Z. Then, the smoothing rank estimating function reduces to

Ũ(θ,ΣR) = EZ{UG(θ +
√

ΣR

n
Z)} = 1

n

n∑
i=1

n∑
j=1

δi(Di −Dj)Φ
(
ej(θ)− ei(θ)

rij

)
(2.6)

where r2
ij = 1

n
(Di −Dj)′ΣR(Di −Dj) and Φ(·) is the cumulative density function

of standard normal distribution. When ΣR is given, the smoothing rank estimating

equation (2.6) is convex and continuously differentiable. The asymptotic variance of

estimated parameter can be consistently estimated via H̃−1B̂H̃−1 where

H̃(θ,ΣR) = ∂Ũ(θ,ΣR)
∂θ

= − 1
n

n∑
i=1

n∑
j=1

δi(Di −Dj)φ(dij)(Di −Dj)′/rij
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and

B̂(θ,ΣR) = 1
n2

n∑
i=1

[
δi

n∑
j=1

(Di −Dj)Φ(dij)
]⊗2

,

where dij = ej(θ)−ei(θ)
rij

, φ(·) is the density function of standard normal distribution.

As suggested in Pang et al. [42], an iterative procedure can be used to simultane-

ously estimate the covariance, which also avoids computational challenges. Let initial

Σ̃R as Ip, repeatedly update Σ̃R as H̃−1B̂H̃−1 until convergence of Σ̃R is achieved to

a specified tolerance. Σ̃R is the variance estimation of θ.

Algorithm

We summarize the algorithm process for the rank-smooth estimation method as fol-

lows:

Step 1: Apply the linear regression model to the data by “glm” in R to obtain

the initial value of θ.

Step 2: For all the combinations of grid points (λ1, . . . , λL), minimize (2.4) to

obtain the estimates of θ. Calculate the GCV score through equation (2.5)

based on optimized θ at the same time. The combination of (λ1, . . . , λL) which

gives the minimum GCV score can be considered the best choice of (λ1, . . . , λL),

and the corresponding θ̂ can be considered the estimates of θ.

Step 3: The approximation of variance of θ̂ can be obtained through the itera-

tive procedure mentioned in Section 2.4.

17



www.manaraa.com

Profile Likelihood Based Estimation Method

Based on the theory of Zeng et al. [70], the kernel-smoothed profile likelihood function

of (2.2) can be written as

Lz(θ) = − 1
n

n∑
i=1

δi(D′iθ + β0)− 1
n

n∑
i=1

δiRi(θ)

+ 1
n

n∑
i=1

δi log
{ 1
nan

n∑
j=1

δjK
(
Rj(θ)−Ri(θ)

an

)}

− 1
n

n∑
i=1

δi log
{ 1
n

n∑
j=1

∫ Rj(θ)−Ri(θ)
an

−∞
K(s)ds

}
(2.7)

where Ri(θ) = log(Ti)−D′iθ−β0, K(·) is a kernel function, and an is the bandwidth.

In order to obtain the smoothing estimators, we also take into account incorpo-

rating a penalty term into (2.7); then the full penalized profile likelihood function

can be expressed as

PLz(θ) = Lz(θ) + 1
2

L∑
l=1

λlα
′
lΨlαl = − 1

n

n∑
i=1

δi(D′iθ + β0)− 1
n

n∑
i=1

δiRi(θ)

+ 1
n

n∑
i=1

δi log
{ 1
nan

n∑
j=1

δjK
(
Rj(θ)−Ri(θ)

an

)}

− 1
n

n∑
i=1

δi log
{ 1
n

n∑
j=1

∫ Rj(θ)−Ri(θ)
an

−∞
K(s)ds

}
+ 1

2

L∑
l=1

λlα
′
lΨlαl

(2.8)

Similar to the definition of penalty term in the penalized loss function (2.4), λl is the

smoothing parameter of the function gl(·), where l = 1, . . . , L. Ψl is a belt-shaped

matrix with dimension Nl × Nl [17]. The unknown parameter θ can be obtained by

maximizing the penalized profile likelihood function (2.8).

Similarly to the smoothing parameters selection of the rank-smooth estimation

method, the smoothing parameter λl can be selected through the cross-validation

method [27,46,72]. The GCV score can be defined as

GCV(λ1, . . . , λL) = Lz(θ)
(1− df/n)2 (2.9)
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where df = trace{H(λ1, . . . , λL)} and H(λ1, . . . , λL) =
(
∂2Lz(θ)
∂θ∂θ′

+ Ψ
)−1 ∂2Lz(θ)

∂θ∂θ′
. Here,

Ψ is a (p + ∑L
l=1Nl) × (p + ∑L

l=1Nl) penalized matrix. After minimizing equation

(2.9), we can obtain the best smooth parameter λl.

Compared with the rank-smooth estimation method, the profile likelihood method

can be used to estimate variance of parameters directly. After selecting the optimized

smooth parameter λ̂l through the minimizing equation (2.9), we plug λ̂l back into

the kernel-smoothed profile likelihood function (2.8), and the variance of θ̂ can be

estimated through the inverse of the second derivative of equation (2.8), which is

ΣZ = 1
M

M∑
h=1

(
∂2

∂θ∂θ′
PLz(θ)

)−1 ∣∣∣∣∣
θ̂

The algorithm is similar to that of the rank-smooth estimation method.

2.5 Simulation Study

We evaluate the performance of the proposed methods through simulations. The

model considered is

log(Ti) = 1 + xi + z3
1i + sin(πz2i) + εi, i = 1, . . . , n,

where xi is from the standard normal distribution N(0, 1), and z1i, z2i are generated

from the uniform distribution U(0, 1). Two types of error distributions are considered:

one is from the normal distribution with mean 0 and standard deviation 0.5; the other

is from the mixture normal distribution 0.5N(0, 0.5)+0.5N(0, 5). The censoring time

is from the exponential distribution, which achieves 15% (light censoring) and 30%

(moderate censoring) censoring rate. 500 simulation data sets are generated under

sample sizes n = 200, n = 400 and n = 800.

We fit the data sets by the proposed methods: rank-smooth estimation method

(rank-smooth) and profile likelihood based estimation method (profile). For the pur-

pose of comparison, we also present the results from the rank-like estimation method
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(rank-like) proposed by Zou et al. [72] . The bias (Bias), empirical standard deviation

(EMPSD) (average of 500 simulations), estimated standard deviation (ESTSD) and

the 95% coverage probability (CP) are recorded for the estimated parameter β̂. For

the nonparametric functions z3
1 denoted by g1(z1), and sin(πz2) denoted by g2(z2),

the estimated integrated mean square errors (IMSE1 and IMSE2) are reported, where

IMSEl = 1
n

n∑
i=1

(ĝl(zli)− gl(zli))2, l = 1, 2.

The results reported in Table 2.1 and Table 2.2 are for error distributions: normal

distribution N(0, 0.5) and mixture normal distribution 0.5N(0, 0.5) + 0.5N(0, 5), re-

spectively.

Table 2.1 Bias, EMPSD, ESTSD and CP of β̂, and IMSE1, IMSE2 for g1(Z1),
g2(Z2) from the 500 simulations data set under normal distribution: N(0,0.5)

n Rate (%) Method β̂ g1(Z1) g2(Z2)
Bias EMPSD ESTSD CP IMSE1 IMSE2

200 15 rank-like -0.0006 0.0428 0.0318 0.840 0.0376 0.0459
rank-smooth -0.0006 0.0428 0.0572 0.962 0.0376 0.0459

profile 0.0066 0.0459 0.0485 0.964 0.0444 0.0586
30 rank-like -0.0076 0.0446 0.0333 0.844 0.0558 0.0522

rank-smooth -0.0076 0.0446 0.0621 0.952 0.0558 0.0522
profile 0.0073 0.0484 0.0527 0.966 0.0592 0.0679

400 15 rank-like 0.0001 0.0290 0.0287 0.952 0.0224 0.0206
rank-smooth 0.0001 0.0290 0.0338 0.950 0.0224 0.0206

profile 0.0064 0.0325 0.0327 0.956 0.0285 0.0407
30 rank-like -0.0033 0.0314 0.0307 0.936 0.0247 0.0273

rank-smooth -0.0033 0.0314 0.0379 0.958 0.0247 0.0273
profile 0.0085 0.0337 0.0358 0.970 0.0309 0.0404

800 15 rank-like -0.0005 0.0209 0.0254 0.980 0.0105 0.0121
rank-smooth -0.0005 0.0209 0.0226 0.954 0.0105 0.0121

profile 0.0059 0.0215 0.0219 0.950 0.0110 0.0131
30 rank-like -0.0021 0.0223 0.0276 0.974 0.0140 0.0132

rank-smooth -0.0021 0.0223 0.0242 0.941 0.0140 0.0132
profile 0.0089 0.0227 0.0241 0.949 0.0148 0.0130

From Table 2.1-2.2, we can see that the biases, empirical standard deviation, es-

timated standard deviation, IMSE1 and IMSE2 from the rank-smooth estimation
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Table 2.2 Bias, EMPSD, ESTSD and CP of β̂, and IMSE1, IMSE2 for g1(Z1),
g2(Z2) from the 500 simulations data set under mixture normal distribution:
0.5N(0,0.5)+0.5N(0,5)

n Rate (%) Method β̂ g1(Z1) g2(Z2)
Bias EMPSD ESTSD CP IMSE1 IMSE2

200 15 rank-like -0.0017 0.0455 0.0384 0.874 0.0753 0.1046
rank-smooth -0.0017 0.0455 0.0640 0.954 0.0753 0.1046

profile 0.0070 0.0484 0.0531 0.956 0.1286 0.1618
30 rank-like 0.0000 0.0541 0.0410 0.850 0.0984 0.0997

rank-smooth 0.0000 0.0541 0.0752 0.968 0.0984 0.0997
profile 0.0208 0.0587 0.0599 0.942 0.1459 0.1449

400 15 rank-like -0.0006 0.0300 0.0354 0.970 0.0324 0.0430
rank-smooth -0.0006 0.0300 0.0383 0.962 0.0324 0.0430

profile 0.0053 0.0325 0.0360 0.970 0.0486 0.0651
30 rank-like -0.0002 0.0371 0.0382 0.942 0.0468 0.0574

rank-smooth -0.0002 0.0371 0.0429 0.948 0.0468 0.0574
profile 0.0146 0.0385 0.0391 0.950 0.0527 0.0727

800 15 rank-like 0.0000 0.0223 0.0322 0.990 0.0210 0.0206
rank-smooth 0.0000 0.0223 0.0246 0.962 0.0210 0.0206

profile 0.0060 0.0223 0.0235 0.964 0.0203 0.0224
30 rank-like 0.0000 0.0246 0.0356 0.988 0.0272 0.0256

rank-smooth 0.0000 0.0246 0.0278 0.938 0.0272 0.0256
profile 0.0145 0.0239 0.0263 0.952 0.0263 0.0245

method, the profile likelihood based estimation method, and the rank-like estima-

tion method are comparable under the normal and mixture normal distributions. It

also demonstrates that the empirical standard deviation and the estimated standard

deviation from both the rank-smooth estimation method and the profile likelihood

based estimation method are very similar, which shows that the estimated standard

deviations from both the induced smoothing technique and the inverse of the second

derivative of the kernel-smoothed profile likelihood function work well. The coverage

probabilities are most stable with our two proposed methods, and all their coverage

probabilities are close to 95%. However, the coverage probability of the rank-like

estimation method is far below from 95% when the sample size is 200, which shows

that the rank-like estimation method tends to underestimate the variance when the
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sample size is small.

When the sample size increases, empirical standard deviation, estimated standard

deviation, IMSE1 and IMSE2 tend to decrease. For example, under the normal dis-

tribution, 15% censoring rate, and 200 sample size, the empirical standard deviation,

estimated standard deviation, IMSE1 and IMSE2 are (0.0428, 0.0572, 0.0376, 0.0459)

from the rank-smooth estimation method, (0.0428, 0.0318, 0.0376, 0.0459) from the

rank-like estimation method, and (0.0459, 0.0485, 0.0444, 0.0586) from the profile

likelihood based estimation method. When the sample size increases to 400, the

empirical standard deviation, estimated standard deviation, IMSE1 and IMSE2 are

(0.0290, 0.0338, 0.0224, 0.0206) from the rank-smooth estimation method, (0.0290,

0.0287, 0.0224, 0.0206) from the rank-like estimation method, and (0.0325, 0.0327,

0.0285, 0.0407) from the profile likelihood based estimation method.

We further investigate the proposed methods by comparing the estimated non-

parametric functions g1(z1) and g2(z2) along with their 95% confidence intervals with

their true functions. The estimated confidence interval is obtained from the normal

approximation using the empirical standard error of ĝ1(z1) and ĝ2(z2). For illustration

purposes, we only illustrate the curve from the normal distribution with sample size

800 under 15% censoring rate. From Figure 2.1 to 2.2, we can see that the estimated

curve ĝ1(z1) is very close to the true curve z3
1 , ĝ2(z2) is very close to sin(πz2) as well,

and both the estimated curves and true curves lie in the 95% confidence intervals.

All the above results show that the two proposed methods are valid.

In order to compare the computational time, we model 10 sets of data with a

sample size of 100, 200, 400, and 800 through the rank-like estimation method, the

rank-smooth estimation method and the profile likelihood based estimation method.

We record the computational time by hours, so under a sample size of 100, 200, 400,

and 800, the computational time of the rank-like estimation method, rank-smooth es-

timation method, and profile likelihood based estimation method are (0.3953, 0.8345,
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Figure 2.1 Estimated g1(Z1) and g2(Z2) obtained from the rank-smooth estimation
method with sample size 800 and 15 % censoring rate when the error term comes
from a normal distribution
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Figure 2.2 Estimated g1(Z1) and g2(Z2) obtained from the profile likelihood based
estimation method with sample size 800 and 15 % censoring rate when the error
term comes from a normal distribution

2.4297, 5.4071), (0.1678, 0.1862, 0.3297, 0.6885), (0.1962, 0.6888, 2.3972, 6.6362),

respectively. The time consuming patterns are shown in Figure 2.3. From this fig-

ure, we can see that the rank-smooth estimation method saves more running time

than both the profile likelihood based estimation method and the rank-like estimation

method. In comparison with the rank-like estimation method, the profile likelihood

based estimation method saves lots of time when the sample size is below 400. How-

ever, when the sample size is above 400, especially when the sample size is 800, the

rank-like estimation method seems to save more time than the profile likelihood based
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Figure 2.3 Computational time patterns for rank-like estimation method,
rank-smooth estimation method and profile likelihood based estimation method,
under different sample size of 100, 200, 400 and 800

2.6 Real Data Analysis

The Mayo primary biliary cirrhosis (PBC) data reported by Fleming and Harrington

[20] is a double-blinded randomized trial conducted by Mayo Clinic between 1974
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and 1984. Similar to [10], we define the survival time as follows: if the patients were

dead, the survival time is the number of days between registration and the earlier of

death; if the patients did the liver transplantation, the survival time is the number

of days between registration and the liver transplantation; if the patients were alive,

the survival time is the number of days between registration and the last time the

patients are found in the study. If the patients were alive or did liver transplantation,

we treat their status as “censored or no event”; If the patients were dead, we treat

their status as “event”. Other risk factors include sex (female vs. male), presence

of edema (0 means no edema and no diuretic therapy for edema; 0.5 means edema

present without diuretics, or edema resolved by diuretics; 1 means edema present

despite diuretic therapy), level of bilirubin (mg/dl) which is a liver bile pigment, and

level of albumin (mg/dl) which is a protein found in the blood.

It is hypothesized that both level of bilirubin and level of albumin would be nonlin-

early related with the time to death of patients. To assess the nonlinear hypotheses,

we utilized the generalized additive model (GAM), which is a well-established gen-

eralized linear model allowing for nonlinear association [23, 63]. When we model the

logarithm of the time to death of patients against the smooth term of bilirubin by

“gam” in R, the result shows that there is a nonlinear relationship between the loga-

rithm of the time to death and bilirubin (estimated degree of freedom: 3.977, p-value

< 0.0001). Similarly, when we model the logarithm of the time to death against the

smooth term of albumin, the result also shows that albumin has a nonlinear associa-

tion with the logarithm of time to death (estimated degree of freedom: 2.424, p-value

< 0.0001). Therefore, we consider both bilirubin and albumin with nonlinear effects

in the proposed AP-AFT model.

The AP-AFT model we consider for the PBC data is as follows:

log(Time) = β1 × sex + β2 × edema + g1(bilirubin) + g2(albumin) + ε (2.10)

Table 2.3 displays the estimates, standard deviations (SD) and 95% confidence
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intervals (CI) of parameters for the PBC data through fitting our proposed AP-AFT

model under three estimation methods. From this table, we can see that estimates

and their standard deviations are similar across the rank-like estimation method, the

rank-smooth estimation method and the profile likelihood based estimation method.

There are consistent conclusions for both sex and edema from the three estimation

methods, that is, both sex and edema have the significant effects on the time to death

of patients, since the 95% confidence intervals for either sex or edema do not include

zero. The results also show that under either the rank-like estimation method or the

rank-smooth estimation method, the time to death of male patients is estimated to

reduce to e−0.3225 = 0.7243 of those female patients, and if edema is present among

the patients, the time to death is estimated to reduce to e−0.3817 = 0.6827 of those

without edema. Under the profile likelihood based estimation method, the time to

death of male patients is estimated to reduce to e−0.5241 = 0.5921 of those female

patients, and the time to death of patients with edema is estimated to reduce to

e−0.4228 = 0.6552 of those without edema.

Table 2.3 Estimates, SD and 95% CI of estimated parameters for the PBC data
from AP-AFT model, under rank-like estimation method, rank-smooth estimation
method and profile likelihood based estimation method

Methods Parameters Estimate Standard Deviation 95% CI
rank-like sex 0.3225 0.1300 (0.0678, 0.5773)

edema -0.3817 0.0864 (-0.5510, -0.2124)
rank-smooth sex 0.3225 0.1311 (0.0655, 0.5795)

edema -0.3817 0.0637 (-0.5066, -0.2568)
profile sex 0.5241 0.1487 (0.2327, 0.8155)

edema -0.4228 0.0946 (-0.6082, -0.2374)

Figure 2.4 shows the nonlinear effects of the risk factors on the time to death

of patients. Both bilirubin and albumin have the nonliner significant effects on the

time to death of patients. Along with the increase of bilirubin, the time to death of

patients nonlinearly decreases. That is to say, patients with high level of bilirubin
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Figure 2.4 Estimated nonlinear terms g1(bilirubin) and g2(albumin) obtained from
rank-smooth estimation method and profile likelihood based estimation method
along with their 95% confidence intervals

tend to have higher death probability than those with low level of bilirubin. We also

find that when the level of albumin increases, the time to death nonlinearly increases.
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2.7 Discussion and Conclusion

In this chapter, we have proposed an additive partial AFT model, and its corre-

sponding estimation methods based on either the rank-smooth method or the profile

likelihood method. The simulation studies show the good performance of the pro-

posed methods. The main difference between the rank-smooth estimation method and

the rank-like estimation method is that the variance of the estimated parameters are

different. The rank-like estimation method used the the resampling techniques while

the other one used the induced smooth techniques. Furthermore, comparing with

the rank-smooth estimation method, the variance estimation of parameters based on

the profile likelihood based method is easy and straightforward, since the variance of

estimated parameters can be obtained through the inverse of the second derivative of

the kernel smoothed profile likelihood function. However, with the increase of sample

size, it may need more time than the rank-smooth method. In summary, we suggest

to using either the rank-smooth method or the profile likelihood method in practice

when sample size is moderate, and otherwise, the rank-smooth estimation method is

recommended.
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Chapter 3

Profile Likelihood based Estimation Method

for the Accelerated Failure Time Mixture

Model with Latent Subgroups

3.1 Abstract

In randomized clinical trials, subgroup analysis is very important and popular. Latent

subgroups arise since we can only know the subgroup membership in the treatment

set, and we know nothing about subgroup membership in the control set. Biologi-

cal efficacy, related to the subgroup of patients who benefit from the treatment, is

an important index for researchers to evaluate the treatment effects in the treat-

ment set. In this chapter, we develop a new estimation method for the semipara-

metric accelerated failure time mixture model with a latent subgroup based on the

expectation-maximization algorithm and the profile likelihood estimation method.

Simulation studies show that the proposed method is comparable to the existing

E-BJ algorithm, which incorporates a weighted Buckley-James optimization in the

maximization step. For illustration, we apply the proposed method to pregnancy data

obtained from Medicaid billing records, birth certificates, Department of Education,

and Department of Disabilities and Special Needs in South Carolina.
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3.2 Introduction

The PH model and the AFT model are the two most popular survival models in

fitting the right censored data. There are broad investigations into the estimation

methods for the AFT model. Miller [40] proposed the least square estimation method

to estimate the parameters in the AFT model. Buckley and James [7] developed a

least square estimation method based on the modified normal equations. Jin, Lin and

Ying [26] proposed one least square estimation method based on the Buckley-James

estimating equation. Tsiatis [56] used the linear rank test technique to estimate the

parameters of the AFT model. Wei, Ying and Lin [61] also used the linear rank

statistics as estimating functions for the regression parameters. Zeng et al. [70]

proposed an approximate nonparametric maximum likelihood method for the AFT

model. This method can be easily used to estimate the variance of parameters through

the inverse of the second derivative of the kernel-smoothed profile likelihood function.

In randomized clinical trials, subgroup analysis is very important and popular,

since it pertains to the assessment of treatment effects for a specific end point in sub-

groups of patients defined by baseline characteristics [58]. We focus on the situation

where patients who are treatable or not treatable do not receive any allocated treat-

ment in the control set. In comparison, patients in the treatment set may or may not

receive the treatment based on the baseline characteristics. For example, based on

race (African American and White), participants are randomized into two sets: treat-

ment set (all are African American) and control set (all are White) to test prostate

cancer. The participants with positive prostate biopsy are classified as treatable sub-

jects, and untreatable subjects are those without positive prostate biopsy. Whether

the participants are treatable subjects or not is not influenced by the randomization.

Treatable subjects in the treatment set belong to treatable subgroup A. The untreat-

able subjects in the treatment set belong to untreatable subgroup B. Whether the

participants in the control set are treatable subjects or not is unknown, so the sub-
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group information in the control set is unknown. Treatable subjects in the treatment

set will receive treatment of prostate surgery; in comparison, there is no treatment

for the untreatable subjects in the treatment set, and no treatment for any subjects

in the control set. The latent subgroup arises since we can only know the information

of prostate biopsy in the treatment set, and we know nothing about prostate biopsy

in the control set. Biological efficacy, related to the subgroup of patients who benefit

from the treatment, is an important index for researchers to evaluate the treatment

effects in the treatment set.

When we incorporate the biological efficacy into the PH model, the PH model be-

comes to the PH mixture model. Follmann [21] proposed a PH model and propensity

score approach to examine the effect of treatment, and used the nonparametric boot-

strap to calculate standard errors of estimated parameters. Loeys and Goetghebeur

[34] developed a PH model with treatment effect on the treated subgroup, derived an

estimating equation, and applied a jackknife to estimate the variance of parameters.

Cuzick et al. [14] developed a PH model with non-compliance and contamination,

and applied the Mantel-Haenszel approach to estimate the treatment effects.

In comparison, when we incorporate the biological efficacy into the AFT model,

the AFT model becomes to the AFT mixture model. Robins and Tsiatis [49] proposed

correcting for non-compliance and used rank estimators to estimate the parameters.

Altstein et al. [2] proposed a parametric estimation method for evaluating the bio-

logical efficacy based on the expectation-maximization (EM) algorithm. The results

showed that their methods perform well when the parametric assumption is right for

the real situation. However, when the parametric assumption of the AFT mixture

model is violated from the real situation, the paramatric estimation method is unsta-

ble. Therefore, Altstein et al. [1] proposed a semiparametric estimation method for

the AFT mixture model without the parametric assumption. Based on the Buckley-

James estimator, they derived an EM algorithm, called E-BJ algorithm, to estimate
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the the biological efficacy.

Motivated by the profile likelihood estimation method proposed by Zeng et al.

[70], which is an approximate nonparametric maximum likelihood method that esti-

mates parameters and is very convenient to estimate variance of estimated parame-

ters, we propose an alternative EM algorithm to estimate the biological efficacy. That

is, given the observed subgroup information for the subjects, we develop an E-step

to evaluate the conditional probability of subgroup membership in the control set.

Then we incorporate the profile likelihood estimation method in the maximization

step to maximize the derived likelihood functions for the observed data.

The remainder of this chapter is organized as follows: Section 3.3 describes the

semiparametric AFT mixture model. Section 3.4 outlines the profile likelihood based

estimation method. Simulation studies are conducted in Section 3.5 to investigate the

performance of the proposed EM algorithm. A real data analysis about pregnancy

mothers is discussed in Section 3.6. Finally, discussion of the results and conclusions

will be made in Section 3.7.

3.3 Semiparametric AFT mixture model

Let Yi = min(Ti, Ci) denote the observed time with i = 1, 2, ..., n, where Ti and Ci

are the failure time and censoring time for subject i, respectively. Let δi be the

censoring indicator with 1 if Ti ≤ Ci and 0 otherwise, Ri be the randomization

assignment (Ri = 1 for treatment set and Ri = 0 for control set) and Gi be the

subgroup indicator. We assume only two subgroups (Gi = g, g = 0, 1) in our study:

one is treatable subgroup of patients (g = 1), and another is untreatable subgroup

of patients (g = 0). Given the observed covariates Zi = (Z1i, Z2i, ..., Zqi)′, and the

randomization assignment Ri, we assume that Ti and Ci are independent. Let O

denote the observed data, including (yi, δi, zi, gi; i : Ri = 1) for the treatment set, and

(yi, δi, zi; i : Ri = 0) for the control set. Then the semiparametric accelerated failure
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time (AFT) mixture model [1] is given by

log(Ti|(Gi = g)) = ψgRi + Z′iβg + εgi (3.1)

where ψg is the biological efficacy, ψ1 is unknown, and ψ0 ≡ 0, that means treatment

only has effect on the treatable subgroup of patients (g = 1) and no effect on the

untreatable subgroup (g = 0). βg is a vector of unknown regression parameters, and

the distributions of the error terms εg at g = 0 or 1 are unknown here.

Let fg(·) be the density function of tie−ψgRi−Z′iβg , and Sg(·) be the corresponding

survival function. Then the completed likelihood function for the observed data O is

L(p, ψ1, β1, β0, S1, S0|O) =∏
i:Ri=1

{p(e−ψ1Ri−Z′iβ1f1(tie−ψ1Ri−Z′iβ1))δiS1(tie−ψ1Ri−Z′iβ1)1−δi}gi

× {(1− p)(e−Z′iβ0f0(tie−Z′iβ0))δiS0(tie−Z′iβ0)1−δi}1−gi

×
∏

i:Ri=0
{pe−Z′iβ1f1(tie−Z′iβ1) + (1− p)e−Z′iβ0f0(tie−Z′iβ0)}δi

× {pS1(tie−Z′iβ1) + (1− p)S0(tie−Z′iβ0)}1−δi

(3.2)

where p is the population proportion of the treatable subgroup, that is, p = P (Gi =

1). Since subgroup status gi is unkonwn in the control set (Ri = 0), the likelihood

function (3.2) cannot be maximized directly.

3.4 Estimation Procedure

We assume the subgroup indicator gi in the control set is observed. Based on the data

of Op = (yi, δi, zi, gi; i : Ri = 0), the completed likelihood function can be rewritten

as

L(p, ψ1, β1, β0, S1, S0|Op) =
n∏
i=1

pgi(1− p)1−gi{(e−ψ1Ri−Z′iβ1h1(tie−ψ1Ri−Z′iβ1))δi exp(−H1(tie−ψ1Ri−Z′iβ1))}gi

× {(e−Z′iβ0h0(tie−Z′iβ0))δi exp(−H0(tie−Z′iβ0))}1−gi

(3.3)

33



www.manaraa.com

where hg(·) is the baseline hazard function, and Hg(·) is the cumulative hazard func-

tion for subgroup g corresponding to fg(·). The logarithm of equation (3.3) can be

written as l(p, ψ1, β1, β0, S1, S0|Op) = l(p|Op)+ l(ψ1, β1, h1, H1|Op)+ l(β0, h0, H0|Op),

where

l(p|Op) =
n∑
i=1
{gi log(p) + (1− gi) log(1− p)} (3.4)

l(ψ1, β1, h1, H1|Op) =
n∑
i=1
{−giδi(ψ1Ri + Z′iβ1) + giδi log(h1(tie−ψ1Ri−Z′iβ1))

− giH1(tie−ψ1Ri−Z′iβ1)}
(3.5)

l(β0, h0, H0|Op) =
n∑
i=1
{−(1− gi)δi(Z′iβ0) + (1− gi)δi log(h0(tie−Z′iβ0))

− (1− gi)H0(tie−Z′iβ0)} (3.6)

EM Algorithm

E-step

Since the subgroup indicator Gi is unobserved in the control set (Ri = 0), the condi-

tional expectation of Gi is computed by using E-step based on the observed data O,

and the estimated parameters Θ(m) = (p(m), ψ
(m)
1 , β

(m)
1 , β

(m)
0 , S

(m)
1 , S

(m)
0 ) at the mth

iteration of the M-step. For the treatment set (Ri = 1), since the subgroup indicator

is observed, then E(Gi|O,Θ(m)) = gi. The conditional expectation of Gi can be

expressed as

w
(m)
i = E(Gi|O,Θ(m))

=



δi
p(m)h

(m)
1 (ε(m)

1i )S(m)
1 (ε(m)

1i )
p(m)h

(m)
1 (ε(m)

1i )S(m)
1 (ε1i)+(1−p(m))h(m)

0 (ε(m)
0i )S(m)

0 (ε(m)
0i )

+(1− δi) p(m)S
(m)
1 (ε(m)

1i )
p(m)S

(m)
1 (ε(m)

1i )+(1−p(m))S(m)
0 (ε(m)

0i )
, Ri = 0

gi, Ri = 1

(3.7)

34



www.manaraa.com

where ε(m)
0i = yi − Z′iβ

(m)
0 , and ε(m)

1i = yi − ψ(m)
1 Ri − Z′iβ

(m)
1 . Replace gi with w(m)

i in

the logarithm of completed likelihood functions (3.4), (3.5) and (3.6), we obtain

E(l(p(m+1)|Op)) =
n∑
i=1
{w(m)

i log(p) + (1− w(m)
i ) log(1− p)} (3.8)

E(l(ψ(m+1)
1 , β

(m+1)
1 , h

(m+1)
1 , H

(m+1)
1 |Op)) =

n∑
i=1
{−w(m)

i δi(ψ(m)
1 Ri + Z′iβ

(m)
1 )

+ w
(m)
i δi log(h(m)

1 (tie−ψ
(m)
1 Ri−Z′iβ

(m)
1 ))− w(m)

i H
(m)
1 (tie−ψ

(m)
1 Ri−Z′iβ

(m)
1 )}

(3.9)

E(l(β(m+1)
0 , h

(m+1)
0 , H

(m+1)
0 |Op)) =

n∑
i=1
{−(1− w(m)

i )δi(Z′iβ
(m)
0 )

+ (1− w(m)
i )× δi log(h(m)

0 (tie−Z′iβ
(m)
0 ))− (1− w(m)

i )H(m)
0 (tie−Z′iβ

(m)
0 )}

(3.10)

Therefore, the purpose of M-step is to maximize the completed likelihood function

(3.3), which is equivalent to maximize the likelihood functions (3.8), (3.9) and (3.10)

separately.

Maximization-step

Similar to the E-BJ algorithm [1], the estimation of p can be obtained by maximizing

equation (3.8), that is,

p(m+1) = 1
n

n∑
i=1

w
(m)
i (3.11)

Since the baseline hazard function h(m)
1 (·) in equation (3.9) and the baseline hazard

function h
(m)
0 (·) in equation (3.10) are not specified, it is hard for us to maximize

the likelihood functions (3.9) and (3.10) directly. Motivated by the kernel-smoothed

profile likelihood estimation method proposed by Zeng and Lin [70], we assume the

piecewise hazard functions to deal with the challenge of unspecified baseline hazard

functions and apply the kernel-smoothed functions to approximate the likelihood

functions.

Let M (m)
g denote an upper bound for the tie−ψ

(m)
g Ri−Z′iβ

(m)
g over all possible ψ(m)

g

′
s

and β(m)
g

′
s in a bounded set, g = 0, 1. An interval [0,M (m)

g ] can be partitioned into
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J (m)
n equally spaced internals, 0 ≡ tg0 < tg1 < ... < t

gJ
(m)
n
≡ M (m)

g . A piecewise

assumption of the hazard function, denoted by h(m)
g (t), can be written as

h(m)
g (t) =

J
(m)
n∑
k=1

C
(m)
gk I(t ∈ [tg(k−1), tgk)), g = 0, 1

The corresponding cumulative hazard function, denoted by H(m)
g (t), is

H(m)
g (t) =

J
(m)
n∑
k=1

(t− tgk)C(m)
gk I(tk−1 ≤ t < tk) +

M (m)
g

J
(m)
n

J
(m)
n∑
k=1

C
(m)
gk I(t ≥ tgk), g = 0, 1

For the treatable subgroup (g = 1), the logarithm of the likelihood function of (3.9)

can be written as

E(l(ψ(m+1)
1 , β

(m+1)
1 , h

(m+1)
1 , H

(m+1)
1 |Op)) =

n∑
i=1

(−w(m)
i δi(ψ(m)

1 Ri + Z′iβ
(m)
1 )

+
J

(m)
n∑
k=1

logC(m)
1k ×

{ n∑
i=1

δiw
(m)
i I(tie−ψ

(m)
1 Ri−Z′iβ

(m)
1 ∈ [t1(k−1), t1k))

}

−
Jn∑
k=1

C
(m)
1k

{ n∑
i=1

w
(m)
i (tie−ψ

(m)
1 Ri−Z′iβ

(m)
1 − t1k)

×I(t1(k−1) ≤ tie
−ψ(m)

1 Ri−Z′iβ
(m)
1 < t1k) + M

(m)
1

J
(m)
n

n∑
i=1

w
(m)
i I(tie−ψ

(m)
1 Ri−Z′iβ

(m)
1 ≥ t1k)

}

By differentiating with respect to C(m)
1k , and solving the score equation of C(m)

1k , we

obtain

Ĉ
(m)
1k =

n∑
i=1

δiw
(m)
i I(tie−ψ

(m)
1 Ri−Z′iβ

(m)
1 ∈ [t1(k−1), t1k))

×
{ n∑
i=1

w
(m)
i (tie−ψ

(m)
1 Ri−Z′iβ

(m)
1 − t1k)I(t1(k−1) ≤ tie−ψ

(m)
1 Ri−Z′iβ

(m)
1 < t1k)

+ M
(m)
1

J
(m)
n

n∑
i=1

w
(m)
i I(tie−ψ

(m)
1 Ri−Z′iβ

(m)
1 ≥ t1k)

}−1

After replacing C(m)
1k with Ĉ(m)

1k , and discarding the irrelevant components to ψ(m)
1

and β(m)
1 , the approximating likelihood function for the treatable subgroup (g = 1)
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can be written as
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(3.12)

where ε(m)
1i (ψ(m)

1 ,β
(m)
1 ) = yi − ψ(m)

1 Ri − Z′iβ
(m)
1 , K(·) is the kernel function, and an is

the bandwidth. Therefore, we will maximize equation (3.12) to replace maximizing

equation (3.9) to obtain ψ(m+1)
1 and β(m+1)

1 .

Given the kernel-smoothed estimators ψ(m+1)
1 and β(m+1)

1 , the baseline hazard

function h(m+1)
1 (t), the cumulative hazard function H(m+1)

1 (t), and the survival func-
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1 (t) can be estimated by
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Similarly, for the untreatable subgroup (g = 0), the logarithm of the likelihood

function of (3.10) can be written as
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By differentiating with respect to C(m)
0k , and solving the score equation of C(m)

0k , we

obtain
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After replacing C
(m)
0k with Ĉ

(m)
0k , and discarding the irrelevant components to β(m)

0 , the

approximating likelihood function for the untreatable subgroup (g = 0) can be written as
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where ε(m)
0i (β(m)

0 ) = yi − Z′iβ
(m)
0 . After replacing equation (3.10) by equation (3.16), we

obtain β(m+1)
0 through maximizing equation (3.16). Given β(m+1)

0 , we estimate h(m+1)
0 (t),

H
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0 (t) and S(m+1)

0 (t) by the following equations

h
(m+1)
0 (t) =

1
nant

∑n
i=1 δi(1− w

(m)
i )K

( ε(m+1)
0i (β(m+1)

0 )−log t
an

)
1
n

∑n
i=1(1− w(m)

i )
∫ ε(m+1)

0i (β(m+1)
0 )−log t
an

−∞ K(s)ds

(3.17)

H
(m+1)
0 (t) =

∫ log t

−∞

1
nan

∑n
i=1 δi(1− w

(m)
i )K

( ε(m+1)
0i (β(m+1)

0 )−s
an

)
1
n

∑n
i=1(1− w(m)

i )
∫ ε(m+1)

0i (β(m+1)
0 )−s
an

−∞ K(u)du

ds (3.18)

S
(m+1)
0 (t) = exp(−H(m+1)

0 (t)) (3.19)

We summarize the proposed EM algorithm as follows:

Step 1: Given initial values: p(0), h
(0)
0 , h

(0)
1 , S

(0)
0 , S

(0)
1 , we obtain the initial values w(0)

i

by equation (3.7) for i = 1, 2, ..., n.

Step 2: Maximize equation (3.12) and equation (3.16) to update the estimates β(1)
1 , ψ

(1)
1 ,

and β(1)
0 , respectively. Update p(1) by equation (3.11), h(1)

1 (t), S(1)
1 (t) by equation (3.13)
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and (3.15), and h
(1)
0 (t), S(1)

0 (t) by equation (3.17) and (3.19). And then update w(1)
i by

equation (3.7).

Step 3: At the jth step, given p(j−1), h
(j−1)
0 (t), S(j−1)

0 (t), h(j−1)
1 (t), S(j−1)

1 (t), calculate

the conditional expectation of Gi through equation (3.7).

Step 4: Maximize equation (3.12) and equation (3.16) to update β(j)
1 , ψ

(j)
1 , and β(j)

0 ,

respectively. Update p(j) by equation (3.11), h(j)
1 (t), S(j)

1 (t) by equation (3.13) and (3.15),

and h(j)
0 (t), S(j)

0 (t) by equation (3.17) and (3.19).

Step 5: Repeat Step 2 and Step 4 until convergence occurs. The convergence criterion is

set to 0.001 for the sum of the square error of the estimates from the jth step and (j+ 1)th

step.

Because of the existence of non-differentiable subgroups, it is hard to evaluate the

variance based on the traditional variance estimation technique. Similar to E-BJ algorithm,

we also use the bootstrap technique to estimate the standard errors of parameters for our

proposed EM algorithm.

3.5 Simulation Study

In order to examine the performance of the proposed method, we conducted simulation

studies under several settings. We will compare the results obtained from our proposed

method with those from the E-BJ algorithm.

We generate 500 simulation data sets with a sample size of 200 and 400 from the AFT

mixture model:

log(Ti|(Gi = g)) = ψgRi + εgi

Where g is drawn from a Bernoulli distribution with success probability of population

proportion of treatable subjects. Randomization assignment R is drawn from a binary

variable taking 0 and 1 with equal probability (1 for the treatment set and 0 for the control

set). We consider two sets of error distributions: normal distributions and extreme-value

distributions. For the normal distributions, ε1i follows the normal distribution with mean

1.5 and standard deviation 0.16, and ε0i follows the normal distribution with mean 1.5 and
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Table 3.1 Bias and SE of ψ̂1 of 500 simulated data sets with a sample size of 200
and 400 from the E-BJ algorithm

n F1 F0 p Rate (%) Bias SE
200 EV(2,0.1) EV(2,0.3) 0.3 30 0.0346 0.1478

50 0.0474 0.1624
0.5 30 0.0139 0.0507

50 0.0108 0.0713
0.8 30 0.0001 0.0289

50 -0.0019 0.0448
N(1.5,0.16) N(1.5,0.2) 0.3 30 0.0162 0.0944

50 0.0264 0.1173
0.5 30 0.0053 0.0557

50 0.0029 0.0694
0.8 30 0.0019 0.0344

50 -0.0028 0.0488
400 EV(2,0.1) EV(2,0.3) 0.3 30 0.0407 0.0806

50 0.0399 0.0842
0.5 30 0.0191 0.0309

50 0.0194 0.0505
0.8 30 0.0041 0.0192

50 0.0023 0.0311
N(1.5,0.16) N(1.5,0.2) 0.3 30 0.0070 0.0699

50 0.0149 0.0908
0.5 30 0.0040 0.0414

50 -0.0006 0.0556
0.8 30 0.0014 0.0260

50 -0.0030 0.0341

standard deviation 0.2. For the extreme-value distributions, ε1i follows the extreme-value

distribution with location parameter 2 and scale parameter 0.1, and ε0i follows the extreme-

value distribution with location parameter 2 and scale parameter 0.3. The censoring time

is generated from the exponential distribution to achieve 30% and 50% censoring rate.

For comparisons, we fit the data sets using both E-BJ algorithm and the proposed EM

algorithm. We choose the true value of the biological efficacy ψ1 as 0.6 in our simulation

study, and we also select the treatable proportion (p) as 0.3, 0.5 and 0.8 to test the ro-

bustness of our proposed method. The bias and empirical standard error (SE) of estimated

biological efficacy ψ1, under the condition of several treatable proportions, are obtained
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Table 3.2 Bias, SE, SD and CP of ψ̂1 of 500 simulated data sets with a sample size
of 200 and 400 from the EM algorithm

n F1 F0 p Rate (%) Bias SE SD CP
200 EV(2,0.1) EV(2,0.3) 0.3 30 0.0062 0.0450 0.0457 0.958

50 0.0294 0.0690 0.0689 0.972
0.5 30 0.0003 0.0296 0.0293 0.962

50 0.0186 0.0423 0.0428 0.960
0.8 30 0.0000 0.0203 0.0205 0.972

50 0.0114 0.0260 0.0263 0.944
N(1.5,0.16) N(1.5,0.2) 0.3 30 0.0029 0.0624 0.0609 0.948

50 0.0330 0.1364 0.1287 0.978
0.5 30 -0.0133 0.0423 0.0420 0.954

50 0.0015 0.0681 0.0698 0.958
0.8 30 -0.0053 0.0339 0.0335 0.950

50 0.0081 0.0433 0.0437 0.936
400 EV(2,0.1) EV(2,0.3) 0.3 30 0.0055 0.0305 0.0289 0.980

50 0.0268 0.0464 0.0444 0.914
0.5 30 0.0002 0.0199 0.0197 0.934

50 0.0143 0.0256 0.0251 0.934
0.8 30 0.0002 0.0134 0.0135 0.970

50 0.0089 0.0174 0.0176 0.924
N(1.5,0.16) N(1.5,0.2) 0.3 30 -0.0055 0.0439 0.0437 0.962

50 0.0269 0.0741 0.0736 0.960
0.5 30 -0.0127 0.0306 0.0305 0.938

50 -0.0018 0.0417 0.0415 0.954
0.8 30 -0.0060 0.0221 0.0219 0.960

50 0.0040 0.0255 0.0255 0.972

from E-BJ algorithm. Furthermore, we also obtain the bias, the empirical standard error

(SE), the estimated standard error (SD) based on 200 bootstrap samplings for each simu-

lation, and the coverage probability (CP) of estimated biological efficacy ψ1 through EM

algorithm. All the results are recorded in Table 3.1 and Table 3.2.

From Table 3.1-3.2, we can see that the bias from EM algorithm tends to be smaller

than those from E-BJ algorithm in most cases, when the error terms are from extreme-value

distributions. In comparison, the bias from EM algorithm tends to be greater than those

from E-BJ algorithm in most cases, when the error terms are from normal distributions.

The coverage probability obtained from our proposed EM algorithm is stable, since all of
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them are close to 95%. The variance estimation of EM algorithm works well, since the SE

and SD of estimated biological efficacy ψ1 are very close to each other. The EM algorithm

performs better when estimating the SE than E-BJ algorithm, since E-BJ algorithm tends

to overestimate the variance of estimated biological efficacy ψ1. Our proposed method per-

forms better when the treatable proportion p is small, compared with the E-BJ algorithm.

For example, when the sample size is 200, the error terms are from extreme-value distribu-

tions, p is 0.3, censoring rate is 30%, the Bias and SE of E-BJ algorithm and EM algorithm

are (0.0346, 0.1478) and (0.0062, 0.0450), respectively.

Along with the increase of sample size from 200 to 400, both SE and SD of estimated

biological efficacy ψ1 tend to decrease. For example, under the normal distributions, when

the treatable proportion p is 0.8, censoring rate is 30%, and sample size is 200, the SE

of estimated biological efficacy ψ1 is 0.0344 from E-BJ algorithm, and the SE and SD of

estimated biological efficacy ψ1 are (0.0339, 0.0335) from EM algorithm. However, when the

sample size increases to 400, the SE of estimated biological efficacy ψ1 decreases to 0.0260

from E-BJ algorithm, and the SE and SD of estimated biological efficacy ψ1 decrease to

(0.0221, 0.0219) from EM algorithm.

With the increase of the treatable proportion p, the biases or variances tend to decrease.

For example, when the extreme-value distributions are assumed, the treatable proportion p

is 0.3, the sample size is 200, and the censoring rate is 50%, the bias and SE for estimated

biological efficacy ψ1 are (0.0474, 0.1624) from E-BJ algorithm, and (0.0294, 0.0690) from

EM algorithm. When the treatable proportion p increases to 0.5, the bias and SE for

estimated biological efficacy ψ1 are (0.0108, 0.0713) from E-BJ algorithm, and (0.0186,

0.0423) from EM algorithm.

3.6 Real Data Analysis

For illustration, we apply our proposed profile likelihood based estimation method to the

pregnancy data obtained from Medicaid billing records, birth certificates, Department of

Education (DOE), and Department of Disabilities and Special Needs (DDSN) in South

Carolina [59]. In this cohort study of maternal and child pairs born between 2004 and
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2010 in South Carolina, the total number of original subjects is 210,176. After we exclude

5,894 non singleton births from the data, the number of observation is reduced to 204,282.

Similar to the inclusion criteria and exclusion criteria mentioned by Wang et al. [59], we

limit the data sample size to 123,922.

Preeclampsia, a common complication of pregnancy, is defined as hypertension with

proteinuria during pregnancy [15,16,36]. Incidences of preeclampsia are increasing and are

becoming to a growing health concern. Pregnancy diabetes, another common complication

of pregnancy, is defined as any degree of glucose intolerance with onset or first recognition

during pregnancy [38]. A number of studies have identified that pregnancy diabetes signif-

icantly increased the risk of preeclampsia [41, 68]. Because of improved prenatal care, the

risk of preeclampsia of pregnancy mothers may be decreased, even though pregnancy moth-

ers have pregnancy diabetes. Therefore, we are interested in building one semiparametric

AFT mixture model without covariates to estimate the biological efficacy of prenatal care,

and evaluate its impact on the survival time to preeclampsia of mothers who have preg-

nancy diabetes or not. We hypothesis that prenatal care can prolong the survival time of

mothers with pregnancy diabetes to be diagnosed with preeclampsia. We define the survival

time in our study as follows: if mothers have preeclampsia, the survival time is time to the

diagnosis of preeclampsia; if mothers do not have preeclampsia, the survival time is time

to the last time the mothers are found in the study or the end of the study. Observations

with missing values on race, starting time of prenatal care, age, BMI, pregnancy diabetes,

and survival time to diagnosis of preeclampsia are excluded from this study. Since we are

interested in whether prenatal care of mothers has significant effects on the survival time to

preeclampsia of mothers, we exclude those mothers with preeclampsia before the starting

of prenatal care, and also exclude those mothers whose pregnancy diabetes happened after

the diagnosis of preeclampsia. Therefore, based on the above exclusion, the total number

of subjects in our study is 80,930.

Mothers in our study are randomized into two groups based on prenatal care, that is, if

mothers receive prenatal care, then they will be included into treatment group, otherwise,

they will be in the control group. In the treatment group (with prenatal care), whether
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mothers have pregnancy diabetes or not is known, but in the control group (without prenatal

care), we assume that we know nothing about the pregnancy diabetes of mothers. In order

to capture the association between the prenatal care and the risk to preeclampsia, the

pregnancy diabetes status of mothers should be considered as the latent group. Based

on the above experimental design, we have 642 mothers without prenatal care and 80,288

mothers with prenatal care in our study. In order to assure the efficiency of experimental

design, we randomly select 700 observations without replacement from 80,288 mothers by

“sample” in R, and combine them with 642 mothers without prenatal care for our final

study. That is, the final total number of mothers used in our study is 1,342.

Table 3.3 summarizes demographic characteristics of data of pregnancy mothers. Among

70 mothers with preeclampsia, 34 of them have the prenatal care, 36 of them do not have

prenatal care. Among 1272 mothers without preeclampsia, 666 of them have the prenatal

care, 606 of them do not have prenatal care. 9 (12.86%) mothers with pregnancy dia-

betes and 25 (35.71%) mothers without pregnancy diabetes in the treatment group (with

prenatal care) have been diagnosed with preeclampsia. In comparison, 36 (51.43%) moth-

ers with or without pregnancy diabetes in the control group (without prenatal care) have

been diagnosed with preeclampsia. 74 (5.82%) mothers with pregnancy diabetes and 592

(46.54%) mothers without pregnancy diabetes in the treatment group (with prenatal care),

and 606 (47.64%) mothers who are in the control group (without prenatal care) do not

have preeclampsia. The mean range of time to develop preeclampsia for mothers in both

treatment group and control group is greater than 260 days.

Table 3.3 Demographic characteristics of data of pregnancy mothers (n = 1342)

Summary Statistics Preeclampsia Survival Time
Yes No Mean (SD)

(N=70) (N=1272)
Treatment (Prenatal Care)

Pregnancy Diabetes 9 ( 12.86%) 74 (5.82%) 269.94 (9.56)
Without Pregnancy Diabetes 25 (35.71%) 592 (46.54%) 270.46 (9.74)

Control (Without Prenatal Care) 36 (51.43%) 606 (47.64%) 266.04 (14.53)

44



www.manaraa.com

Based on the above study design, the semiparametric AFT mixture model without

covariates we consider for the data of pregnancy mothers is as follows:

log(Ti|(Gi = g)) = ψgRi + εgi

Where ψ0 ≡ 0, g = 1 if mothers have pregnancy diabetes, g = 0 if mothers do not have

pregnancy diabetes, Ri = 1 if mothers receive prenatal care, Ri = 0 if mothers do not

receive prenatal care.

Table 3.4 Semiparametric AFT mixture model results: estimate and 95%
confidence interval for biological efficacy ψ1

Biological Efficacy Estimate Standard Deviation 95% Confidence Interval
ψ1 0.0522 0.4120 (-0.7554, 0.8597)

Table 3.4 shows estimate, standard deviation, and its corresponding 95% confidence

intervals of biological efficacy ψ1 for testing a treatment difference. It can be seen that pre-

natal care does not significantly prolong the mean days to develop preeclampsia of mothers

with pregnancy diabetes, since 95% confidence interval for the biological efficacy ψ1 includes

zero.

3.7 Discussion and Conclusion

In this chapter, we develop an EM algorithm based estimation method for the AFT mixture

model. Our simulation study shows that our proposed method is comparable to the E-BJ

algorithm based estimation method. In particular, our proposed method outperforms the

existing method in estimating variance of parameters, as well as fitting the small treatable

proportion survival data. The pregnancy data results show that our proposed estimation

method is valid to handle the real data.

45



www.manaraa.com

Chapter 4

Estimation Method for Extended Hazards

Model

4.1 Abstract

The extended hazards model is more flexible than either the proportional hazards model

or the accelerated failure time model, since it has the merits of both. We proposed an

alternative estimation method for the extended hazards model by modeling baseline cumu-

lative hazard function with monotone splines of Ramsay. Simulation studies show that the

proposed estimation method performs as well as the existing profile likelihood estimation

method in estimating regression parameters. The proposed monotone splines estimation

method is illustrated through Stanford heart transplant data.

4.2 Introduction

Survival data is very commonly seen in disease-related studies, and survival analysis is a

major tool to help researchers to identify the potential risk factors for the interesting disease,

such as cancer. The main issue in accurately predicting the survival probability is how to

correctly model the survival data. Survival data has its special characteristics, such as right

censoring, which cannot be handled by the traditional regression models. The PH model

[13] and the AFT model [7, 60] are the most popular survival models in survival analysis.

The PH model assumes the regression structure on the logarithm of hazard function, while

the AFT model assumes the regression structure on the time scale. Before we use the PH

model to model the survival data, we often need to check the PH assumption. However, it

is hard for us to check the PH assumption when the sample size is finite. When the PH
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assumption is not satisfied, the AFT model becomes an alternative tool, because the AFT

model has quite direct physical interpretation. Due to the PH assumption in the PH model

and the linear regression form in the AFT model, there are cases where neither the PH

model nor the AFT model can be applied in practice directly. Therefore, we consider an

extended hazards (EH) model proposed by Ciampi et al. [12], which not only includes a

nested structure of both the PH model and the AFT model, but also possesses the merits

of both models.

The unspecific baseline hazard function in the EH model increases the challenge for

statistical inference. Therefore, many approaches have been proposed for handling this

challenge. Ciampi et al. [12] used a polynomial function to approximate the baseline

hazard function, and built a likelihood function to estimate the parameters. However,

this method is not always efficient. Chen and Jewell [11] utilized the counting process

approach to estimate the parameters of the EH model without restricting the baseline

hazard function. The non-smoothness of the estimating equation in the counting process

approach may lead to some problems in statistical inference. Both Tseng et al. [55] and Tong

et al. [54] developed a similar estimation method assuming the piecewise of baseline hazard

function, based on the kernel-smoothed profile likelihood estimation method proposed by

Zeng et al. [70]. Their methods may generate excessively smooth estimations and therefore

induce bias of estimation. Furthermore, the estimation of parameters may be sensitive

to the choice of bandwidths. Therefore, we propose to use monotone splines of Ramsay

[47] to approximate the baseline hazard functions in the EH model, and apply resampling

techniques to evaluate the variance of parameters. Our new method is easy to implement,

as well as more efficient and stable in estimating the unknown parameters. Furthermore,

the use of monotone splines for modeling the baseline hazard function ensures smoothness

in the estimated survival function.

The organization of this chapter is as follows: Section 4.3 describes the EH model. Sec-

tion 4.4 provides the details to use monotone splines of Ramsay and outlines our proposed

estimation method. Simulation studies are conducted in Section 4.5 to evaluate the per-

formance of the proposed estimation method. A real data analysis about Stanford heart
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transplant data is discussed in Section 4.6. Finally, we give our discussion and conclusion

in Section 4.7.

4.3 Extended Hazards Model

Let T be the survival time, the EH model proposed by Ciampi et al. [12] can be described

as:

λT |Z(t) = λ0(teβ′Z)eα′Z (4.1)

where λ0(·) is the unspecified baseline hazard function, Z is the p-dimensional vector of

covariates, α and β are the two p × 1 vectors of unknown parameters. When β = 0 then

the EH model becomes the PH model, that is:

λT |Z(t) = λ0(t)eα′Z (4.2)

When α = β then the EH model becomes the AFT model, that is:

log(T ) = −β′Z + ε (4.3)

where ε are independent error terms with a common distribution, which is independent of

Z.

4.4 Estimation Procedure

Let Ti denote the failure time for the subject i, Ci be the censoring time for the subject

i, Zi be the p × 1 vector of covariates, Yi = min(Ti, Ci) be the observed failure time, and

δi = I(Ti ≤ Ci) be the censoring indicator, where i = 1, . . . , n. Conditional on covariates

Zi, Ti is assumed to be independent of Ci. Given the observed data Oi = (Yi, δi,Zi), the

likelihood function can be written as

L(α,β, λ0|Oi) =
n∏
i=1

{
λ0(Yieβ

′Zi)eα′Zi
}δi exp(−Λ0(Yieβ

′Zi)e(α−β)′Zi) (4.4)

where λ0(·) is the baseline hazard function, and Λ0(·) is the cumulative hazard function.

Then the logarithm of equation (4.4) can be rewritten as

l(α,β, λ0|Oi) =
n∑
i=1

δiα
′Zi +

n∑
i=1

δi log
{
λ0(Yieβ

′Zi)
}
−

n∑
i=1

{
Λ0(Yieβ

′Zi)e(α−β)′Zi} (4.5)
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Since the log-likelihood function (4.5) is a function of unknown parameters of α, β and

Λ0(·), we aim to estimate all of them. However, we may face challenges when we maximize

the log-likelihood function (4.5) to obtain Λ0(·), since Λ0(·) is an unspecified, nondecreasing

function with infinite dimension. Motivated by the inference of the PH model through

modeling baseline cumulative hazard function with monotone splines [8,37], we propose to

use monotone splines of Ramsay [47] to model Λ0(Yieβ
′Zi) in the equation (4.5).

The monotone splines of Ramsay [47] can be described as

Λ0(t) =
k∑
l=1

γlIl(t) (4.6)

where Il(·) is the integrated spline basis function, which is nondecreasing from 0 to 1, and

γl are chosen from nonnegative value in order to keep the monotonicity of Λ0(t). Since

k = knots + degree − 2, we can fully determine the k spline basis functions if the knots

and degree are specified. Knots, which determine the shape of the monotone splines, can

be specified through a sequence of increasing points within a finite interval of the minimum

and maximum of the censoring times. Degree, which determines the smoothness of the

monotone splines, can be specified with linear (degree = 1), quadratic (degree = 2) and

cubic functions (degree = 3), respectively. The number of knots are very important when

we use monotone splines of Ramsay [47] to model Λ0(·), since a large number of knots may

lead to the over-fitting of the Λ0(·), and a small number of knots may cause the ill-fitting

of the Λ0(·). Recommended by Lin and Wang [33], Wang and Dunson [57], Cai et al. [8],

and McMahan et al. [37], a moderate number (10-30) of equally-spaced knots will be used

in our study.

After modeling Λ0(Yieβ
′Zi) through monotone splines of Ramsay [47], the log-likelihood

function (4.5) can be rewritten as

ls(α,β,γ|Oi) =
n∑
i=1

δiα
′Zi +

n∑
i=1

δi log
{ k∑
l=1

γlMl(Yieβ
′Zi)

}
−

n∑
i=1

{ k∑
l=1

γlIl(Yieβ
′Zi)e(α−β)′Zi} (4.7)

where Ml(·) is a set of basis splines. Then the unknown parameters α, β, and γ can be

obtained directly by maximizing equation (4.7). We estimate the variance of the estimated

parameters based on the resampling technique.
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4.5 Simulation Study

The performance of the proposed method in our study will be investigated through simu-

lation studies. For the purpose of comparison, we also present the results from the kernel-

smoothed profile likelihood estimation method proposed by Tseng et al. [55]. Similar to

the study of Tseng et al. [55], we will generate 500 simulation datasets with a sample size

of 200 and 400, the baseline hazard function is from a log-logistic distribution:

λ0(t) =
b
a( ta)b−1

1 + ( ta)b
(4.8)

where a = 120 and b = 4. In our simulation study, we choose the true value of α and β as

(−1,−1)′ and (−0.5,−0.5)′ for the EH model, (−1,−1)′ and (0, 0)′ for the EH model, called

restricted PH (RPH) model, (−1,−1)′ and (−1,−1)′ for the EH model, called restricted

AFT (RAFT) model, respectively. The covariates Z = (Z1,Z2)′, where Z1 is generated

from Bernoulli distribution with success probability of 0.5, Z2 is generated from standard

normal distribution. Censoring times are generated from an exponential distribution with

different means to obtain different censoring rates. Recommended by Lin and Wang [33],

Wang and Dunson [57], Cai et al. [8], and McMahan et al. [37], we will choose knots as

30, and degree as 2 to control the smoothness of the splines. γ will be given some equal

nonnegative values. Then the unknown parameters in the EH model can be estimated

based on the maximum likelihood estimation (MLE) method. The bootstrapped standard

deviations (BSD) for our proposed monotone splines method is obtained by 200 repetitions.

The biases, empirical standard deviations (ESD), and BSD of α̂1, α̂2, β̂1, β̂2 of 500

simulated data sets with a sample size of 200 and 400 from the EH model, RPH model, and

RAFT model are computed, and the results are shown in Tables 4.1-4.3. The results from

the EH model, seen in Table 4.1, show that the performance of our proposed monotone

splines method and the profile likelihood method proposed by Tseng et al. are quite similar

for different censoring rates and sample sizes. The ESD and BSD of our proposed method

are close, which shows that the proposed estimation method performs well in simulation

settings. With respect to the ESD, the ESD from our proposed method is less than that

from the profile likelihood method, which shows that our proposed method has significantly
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improved the standard deviation of estimated parameters. For example, with the censoring

rate of 15%, the ESD of α̂1, α̂2, β̂1, and β̂2 are (0.1797, 0.1076, 0.1468, 0.0816) for the

profile likelihood method, and (0.0677, 0.0402, 0.0668, 0.0578) for our proposed estimation

method.

Table 4.1 Bias, ESD and BSD of α̂1, α̂2, β̂1, β̂2 of 500 simulated data sets with a
sample size of 200 and 400 from the EH model

Methods n CR (%) Parameters Bias ESD BSD
Monotone Splines 200 15 α1 0.0573 0.0677 0.0589

α2 0.0165 0.0402 0.0409
β1 -0.0406 0.0668 0.0530
β2 -0.0100 0.0578 0.0471

35 α1 0.0039 0.0596 0.0577
α2 0.0447 0.0553 0.0534
β1 0.0401 0.0827 0.0772
β2 0.0525 0.0897 0.0752

400 15 α1 0.0619 0.0731 0.0609
α2 0.0193 0.0355 0.0349
β1 -0.0680 0.0675 0.0500
β2 -0.0367 0.0548 0.0427

35 α1 0.0244 0.0602 0.0564
α2 0.0232 0.0448 0.0454
β1 0.0116 0.0628 0.0631
β2 0.0409 0.0663 0.0607

Profile Likelihood 200 15 α1 0.0282 0.1797
α2 0.0404 0.1076 -
β1 0.0026 0.1468 -
β2 -0.0104 0.0816 -

35 α1 0.0853 0.1946 -
α2 0.0837 0.1204 -
β1 -0.0388 0.1508 -
β2 -0.0347 0.0955 -

400 15 α1 0.0286 0.1309 -
α2 0.0229 0.0786 -
β1 -0.0093 0.1005 -
β2 -0.0035 0.0590 -

35 α1 0.0766 0.1583 -
α2 0.0657 0.0949 -
β1 -0.0305 0.1166 -
β2 -0.0274 0.0670 -
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Table 4.2 displays the results of bias, ESD, and BSD of α̂1, α̂2, β̂1, β̂2 of 500 simulated

data sets with a sample size of 200 and 400 from the RPH model. The results reveal that

when the censoring rate is light (15%) and the sample size is large (n = 400), our proposed

estimation method and the profile likelihood method are comparable. For example, when

the censoring rate is 15% and the sample size is 400, the bias of α̂1, α̂2, β̂1, β̂2 are (0.0931,

0.0905, -0.0134, -0.0036) for the profile likelihood method, and (-0.0162, 0.0107, -0.0281,

-0.0314) for the monotone splines method. However, when the sample size is small (n =

200) or the censoring rate is 35%, the profile likelihood method tends to have larger biases

for α̂1 and α̂2 than that from monotone splines method. For example, when the sample

size is 400 and the censoring rate is 35%, the biases of α̂1 and α̂2 are (0.1273, 0.1220) for

the profile likelihood method, and (-0.0432, -0.0061) for our proposed monotone splines

method. Similar to the EH model, the ESD of α̂1, α̂2, β̂1, β̂2 from our proposed monotone

splines method tends to be smaller than that from the profile likelihood method, which

indicates that the profile likelihood method may overestimate the variances of estimated

parameters. The ESD and BSD from our proposed monotone splines method are also close

to each other, which shows that our proposed method performs well.

Compared to the profile likelihood method, the proposed monotone splines method also

performs well in the RAFT model (seen in the Table 4.3). The biases of α̂1, α̂2, β̂1, β̂2 are

comparable from the proposed monotone splines method and the profile likelihood method.

The ESDs from the proposed monotone splines method tend to be smaller than those

from the profile likelihood method, except for β̂2. The ESD and BSD from our proposed

monotone splines method are close to each other, which shows that our proposed estimation

method is valid to estimate the parameters in the RAFT model. For example, when the

sample size is 400 and the censoring rate is 35%, the ESD and BSD of β̂2 from monotone

splines method are (0.1174, 0.1135).

4.6 Real Data Analysis

For illustration, we apply our proposed monotone splines estimation method to the famous

Stanford heart transplant data [39, 60]. This data includes 184 patients who had received
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Table 4.2 Bias, ESD and BSD of α̂1, α̂2, β̂1, β̂2 of 500 simulated data sets with a
sample size of 200 and 400 from the RPH model

Methods n CR (%) Parameters Bias ESD BSD
Monotone Splines 200 15 α1 -0.0076 0.0890 0.0878

α2 0.0072 0.0765 0.0779
β1 -0.0446 0.0820 0.0775
β2 -0.0395 0.0471 0.0449

35 α1 -0.0137 0.0800 0.0759
α2 -0.0147 0.0669 0.0622
β1 -0.0442 0.0637 0.0661
β2 -0.0503 0.0476 0.0446

400 15 α1 -0.0162 0.0694 0.0761
α2 0.0107 0.0556 0.0654
β1 -0.0281 0.0533 0.0640
β2 -0.0314 0.0374 0.0368

35 α1 -0.0432 0.0907 0.0848
α2 -0.0061 0.0680 0.0625
β1 -0.0396 0.0591 0.0629
β2 -0.0380 0.0352 0.0367

Profile Likelihood 200 15 α1 0.1332 0.1775 -
α2 0.1411 0.0975 -
β1 -0.0102 0.1353 -
β2 -0.0124 0.0818 -

35 α1 0.1727 0.1927 -
α2 0.1770 0.1356 -
β1 -0.0463 0.1585 -
β2 -0.0455 0.1050 -

400 15 α1 0.0931 0.1250 -
α2 0.0905 0.0780 -
β1 -0.0134 0.0899 -
β2 -0.0036 0.0567 -

35 α1 0.1273 0.1558 -
α2 0.1220 0.0979 -
β1 -0.0238 0.1201 -
β2 -0.0275 0.0681 -
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Table 4.3 Bias, ESD and BSD of α̂1, α̂2, β̂1, β̂2 of 500 simulated data sets with a
sample size of 200 and 400 from the RAFT model

Methods n CR (%) Parameters Bias ESD BSD
Monotone Splines 200 15 α1 -0.0137 0.0715 0.0654

α2 0.0116 0.0508 0.0482
β1 0.0388 0.1010 0.0908
β2 -0.0093 0.1175 0.1117

35 α1 -0.0207 0.0749 0.0668
α2 0.0448 0.0607 0.0526
β1 0.0456 0.1169 0.1038
β2 -0.0634 0.1524 0.1458

400 15 α1 0.0071 0.0598 0.0616
α2 0.0037 0.0361 0.0392
β1 0.0075 0.0819 0.0778
β2 -0.0146 0.0949 0.0897

35 α1 -0.0087 0.0669 0.0648
α2 0.0261 0.0510 0.0482
β1 0.0292 0.1003 0.0906
β2 -0.0523 0.1174 0.1135

Profile Likelihood 200 15 α1 -0.0167 0.2185 -
α2 -0.0235 0.1145 -
β1 0.0139 0.1630 -
β2 0.0070 0.0868 -

35 α1 -0.0462 0.1763 -
α2 -0.0499 0.1045 -
β1 0.0173 0.1438 -
β2 0.0184 0.0819 -

400 15 α1 -0.0163 0.1285 -
α2 -0.0103 0.0771 -
β1 0.0093 0.1022 -
β2 0.0043 0.0607 -

35 α1 -0.0530 0.1335 -
α2 -0.0352 0.0854 -
β1 0.0187 0.1075 -
β2 0.0094 0.0658 -
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heart transplants, and 27 patients are excluded from our study since they have the missing

value of T5 mismatch scores. T5 mismatch scores were used to evaluate the degree of

tissue incompatability between the initial donor and recipient hearts with respect to HLA

antigens. Age at the time of the first transplant was recorded into the data. The survival

time was defined as time to death after transplantation in days. The censoring indicator

is defined as 1 if patients died, and as 0 if patients did not die. We are very interested in

assessing whether age has significant effects on the survival time of patients. The standard

errors of estimates from our proposed monotone splines estimation method are obtained

using the bootstrap method based on 200 bootstrap samples. For comparison, we also

present the results of Stanford heart transplant data from the profile likelihood method.

The model we consider for the Stanford heart transplant data is as follows:

λT |age(t) = λ0(teβ′×age)eα′×age (4.9)

Table 4.4 Estimates, standard errors (SE), and 95% confidence intervals of
estimated parameters for the Stanford heart transplant data under the EH model

Methods Parameter Estimate SE 95% Confidence Interval
Profile Likelihood α

age 0.0073 0.0198 (-0.0315, 0.0461)
β
age -0.0421 0.0308 (-0.1025, 0.0183)

Monotone Splines α
age 0.0197 0.0036 (0.0127, 0.0267)
β
age -0.0463 0.0029 (-0.0521, -0.0406)

Table 4.4 displays estimates, standard errors (SE), and 95% confidence intervals of

estimated parameters for the Stanford heart transplant data from both the profile likelihood

method and the monotone splines method under the EH model. From the results, we can see

that the estimates of the parameters from the profile likelihood estimation method are very

similar to those from the monotone splines method, but the standard errors of estimated

parameters from the profile likelihood estimation method tend to be higher than those from

the monotone splines method. The results of our proposed monotone splines method show
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that age has both the PH effect and the AFT effect, since all the 95% confidence intervals

do not include zero. The PH effect (α̂ = 0.0197) may mean that, along with the increase of

age at the time of the first transplant, the patients had high relative risk to be dead. The

AFT effect (β̂ = -0.0463) may mean that the younger the patients were at the first time

transplant, the longer they would survive after heart transplant.

4.7 Discussion and Conclusion

In this chapter, we have proposed an alternative estimation method based on monotone

splines of Ramsay. The simulation studies show that our proposed monotone splines es-

timation method is valid and flexible. It also shows that our proposed monotone splines

method is comparable to the profile likelihood estimation method. Especially, our proposed

method performs well in the restricted EH model, where β of the EH model are set as zero.

The main difference between the profile likelihood method and our proposed monotone

splines method is that the profile likelihood method may tend to overestimate the variance

of estimated parameters. Comparing with our proposed method, the variance estimation

of parameters based on the profile likelihood method is easy and straightforward, since

the variance of estimated parameters can be obtained through the inverse of the second

derivative of the kernel smoothed profile likelihood function.

The real data results show that our conclusion is different from those from the profile

likelihood estimation method. One possible reason for this is that the variance of esti-

mated parameters from our proposed method is lower than those from the profile likelihood

method. We believe that our proposed estimation method is valid, since our conclusions

about the Stanford heart transplant data are very close to the conclusions from either the

AFT model or the PH model.
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Chapter 5

Estimation Method for Extended Hazards

Mixture Cure Model

5.1 Abstract

We propose an extended hazards mixture cure model, which incorporates a logistic regres-

sion for the incidence part and an extended hazards model for the latency part of mixture

cure model. The extended hazards mixture cure model not only retains the merits of the

proportional hazards mixture cure model and the accelerated failure time mixture cure

model, but also is more flexible than either the proportional hazards mixture cure model or

the accelerated failure time mixture cure model. We also proposed an estimation method

by modeling baseline cumulative hazard function with monotone splines of Ramsay in the

latency part of the mixture cure model. Simulation studies show that the proposed estima-

tion method performs well in estimating regression parameters. The proposed estimation

method and extended hazards mixture cure model are illustrated using melanoma data from

the ECOG phase III clinical trial E1684 and leukemia data from a bone marrow transplant

study.

5.2 Introduction

In the survival analysis, the PH model [13] assumes the regression structure of the logarithm

of hazard function, and the AFT model [7,60] assumes there is a linear relationship between

the logarithm of survival time and covariates. We may need to check the PH assumption

before we use the PH model. But when the sample size is small, checking PH assumption is

not so easy, therefore, the model results may be biased when the PH assumption is violated.
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Under this situation, the AFT model may be an alternative for the PH model, because of

its direct physical interpretation. However, there must be situations where neither the PH

model nor the AFT model is suitable. Therefore, Ciampi et al. [12] proposed a more

flexible model, called the extended hazards (EH) model, which can be used as not only the

PH model but also the AFT model based on some conditions.

The common assumption hidden in both the PH model and the AFT model is that if the

follow-up time is long enough, all the patients in the studies will experience the interesting

event. However, due to the development of technology, more and more patients have been

cured and fewer have experienced the interesting event. For example, through curative

surgical resection of tumors, the cure rate of patients with stage I lung cancer (tumor size

greater than 45 mm in diameter) could be up to 43% [62]. Kuflik [28] used deep cryosurgery

technique to cure patients with skin cancer, and concluded that the overall 30-year cure

rate was 98.6%. That diseases can be cured will potentially motivate researchers to develop

mixture cure models [3, 4].

Let T be the survival time,X be another p-dimensional vector of covariates independent

from Z, and f(t|X,Z) and S(t|X,Z) be the probability density function and the survival

function of failure time T , respectively. Then the mixture cure model [3,4] can be expressed

as

S(t|X,Z) = 1− π(X) + π(X)Su(t|Z) (5.1)

where π(X), which is called “incidence”, is the proportion of uncured patients depending

on X; Su(t|Z), which is called “latency”, is the survival probability of uncured patients

depending on Z. If the latency part of the mixture cure model is modelled with the PH

model, the mixture cure model is called the PH mixture cure model. If the latency part

of the mixture cure model is modelled with the AFT model, the mixture cure model is

called the AFT mixture cure model. The PH mixture cure model and the AFT mixture

cure model are the two most important survival models for the survival data with cure

information.

Estimation methods for the PH mixture cure model have been widely developed by

researchers in recent years. Kuk and Chen [29] combined a logistic formulation for the in-
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cidence part and used the PH model to model the latency part in the mixture cure model.

They maximized a Monte Carlo approximation of a marginal likelihood to estimate the

parameters, and applied the expected-maximization (EM) algorithm to estimate the base-

line survivor function. Their methods showed reasonable efficiency. Taylor [53] proposed

a logistic regression model for the incidence part of the model, and a Kaplan-Meier type

approach to estimate the latency part of the model. His methods seem to be less efficient

for estimating the latency distribution. Peng and Dear [43] considered the dependence of

the probability on the survival function of uncured patients, and utilized the EM algorithm,

the marginal likelihood approach, and multiple imputations to estimate the parameters. Sy

and Taylor [52] developed maximum likelihood techniques and the EM algorithm for the

joint estimation of the incidence and latency regression parameters. They had proved that

their methods were generally better than the parametric methods when the censoring rate

is higher. Fang et al. [18] investigated large sample inference from the semiparametric PH

mixture cure model.

With regard to the AFT mixture cure model, there are also many discussions of esti-

mation methods. Li and Taylor [31] used an AFT model with unspecified error distribution

to determine the latency, and developed an EM algorithm estimation method to estimate

the unknown parameters. Zhang and Peng [71] proposed a new estimation method for

the semiparametric AFT mixture cure model, and their methods employed the EM algo-

rithm and the rank estimator of the AFT model to estimate the parameters of interest.

Results showed that their proposed estimation methods improved the identifiability of the

parameters, compared to the parametric estimation methods. Xu and Zhang [64] proposed

an alternative estimation method by incorporating the profile likelihood into the M-step

of the EM algorithm, and their method worked well for the light censoring survival data.

Xu and Zhang [65] proposed a multiple imputation method based on the rank estimation

method and the profile likelihood method. Lu [35] developed a kernel-smoothing-based EM

algorithm for efficient estimation and derived the asymptotic properties for the resulting

estimates.

When we fit the survival data with cure information, we should choose whether to use
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the PH mixture cure model or the AFT mixture cure model by checking the assumptions.

However, not all the survival data with cure information can be modelled by either the

PH mixture cure model or the AFT mixture cure model. Therefore, we proposed an EH

mixture cure model, which incorporates a logistic regression for the incidence part, and an

EH model for the latency part of the mixture cure model, because the unspecific baseline

hazard function of the EH model in the latency part of the mixture cure model increases

the challenge for statistical inference. Therefore, many approaches have been proposed for

handling this challenge. Ciampi et al. [12] used a polynomial function to approximate

the baseline hazard function, and built a likelihood function to estimate the parameters.

However, this method is not always efficient. Chen and Jewell [11] utilized the counting pro-

cess approach to estimate the parameters of the EH model without restricting the baseline

hazard function. The non-smoothness of the estimating equation in the counting process

approach may lead to some problems in statistical inference. Both Tseng et al. [55] and

Tong et al. [54] developed a similar estimation method assuming the piecewise of baseline

hazard function, based on the kernel-smoothed profile likelihood estimation method pro-

posed by Zeng et al. [70]. Their methods may generate excessive smoothness and therefore

induce bias of estimation. Furthermore, the estimation of parameters may be sensitive to

the choice of bandwidths. Therefore, the purpose of this study is to develop an EH mixture

cure model, use monotone splines of Ramsay to approximate the baseline hazard functions

of the EH model in the latency part of the mixture cure model, apply maximum likeli-

hood techniques to estimate the unknown parameters, and utilize resampling techniques to

evaluate the variance of estimated parameters.

We organize this chapter as follows: Section 5.3 depicts the EH mixture cure model.

Section 5.4 describes the details of our proposed estimation method. Simulation studies are

conducted in Section 5.5 to evaluate the performance of the proposed estimation method.

Finally, the discussion and conclusion of our study are given in Section 5.7.
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5.3 Extended Hazards Mixture Cure Model

The EH mixture cure model we propose has the logistic regression for the incidence and

the EH model for the latency. A logit link function used to model the incidence component

can be expressed as

π(X) = ed
′X

1 + ed′X
(5.2)

where d is a row vector of unknown parameters. The latency component can be described

as:

λu(t|Z) = λ0(teβ′Z)eα′Z (5.3)

where λ0(·) is the unspecified baseline hazard function, Z is the p-dimensional vector of

covariates, α and β are the two p×1 vectors of unknown parameters. For uncured patients,

if the hazard function λu(t|Z) satisfies PH assumption, the mixture cure model reduces to

the PH mixture cure model; if there is some linear relationship between time and covariates

of uncured patients, the mixture cure model reduces to the AFT mixture cure model.

5.4 Estimation Procedure

Let Yi be the observed failure time, Zi be p × 1 vector of covariates in the latency part,

Xi be p × 1 vector of covariates in the incidence part, and δi be the censoring indicator

with δi = 1 for the uncensored time and δi = 0 for the censored time, where i = 1, . . . , n.

We assume the censoring time is independent and noninformative. Based on the equation

(5.3), we can easily obtain the cumulative hazard function Λu(Yi|Zi) through integration,

then

Λu(Yi|Zi) = Λ0(Yieβ
′Zi)e(α−β)′Zi (5.4)

where Λ0(·) is the baseline cumulative hazard function.

Let fu(Yi|Zi) and Su(Yi|Zi) be the density probability function of Yi and the corre-

sponding survival function, and given the observed data Oi = (Yi, δi,Zi,Xi), the likelihood

function can be written as

L(α,β, d, fu, Su|Oi) =
n∏
i=1

{
π(Xi)fu(Yi|Zi)

}δi{1− π(Xi) + π(Xi)Su(Yi|Zi)
}1−δi (5.5)
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After some transformation based on the equation (5.4), then the equation (5.5) can be

rewritten as

L(α,β, d, λ0,Λ0|Oi) =
n∏
i=1

{
π(Xi)e−Λ0(Yieβ

′Zi )e(α−β)′Ziλ0(Yieβ
′Zi)eα′Zi

}δi
×
{
1− π(Xi) + π(Xi)e−Λ0(Yieβ

′Zi )e(α−β)′Zi}1−δi

(5.6)

Then the logarithm of equation (5.6) can be written as

l(α,β, d, λ0,Λ0|Oi) =
n∑
i=1

{
δi(log[π(Xi)] +α′Zi)− δiΛ0(Yieβ

′Zi)e(α−β)′Zi

+ δi log[λ0(Yieβ
′Zi)] + (1− δi) log[1− π(Xi) + π(Xi)e−Λ0(Yieβ

′Zi )e(α−β)′Zi ]
} (5.7)

Since the log-likelihood function (5.7) is a function of unknown parameters of α, β, d, λ0,

Λ0, we aim to estimate all of them. However, we may face challenges when we maximize

the log-likelihood function (5.7) to obtain Λ0(·), since Λ0(·) is an unspecified nondecreasing

function with infinite dimension. Motivated by the inference of the PH model through

modeling baseline cumulative hazard function with monotone splines [8,37], we propose to

use monotone splines of Ramsay [47] to model Λ0(Yieβ
′Zi) in the equation (5.7).

The monotone splines of Ramsay [47] can be described as

Λ0(t) =
k∑
l=1

γlIl(t) (5.8)

where Il(·) is the integrated spline basis function, which is nondecreasing from 0 to 1, and

γl are chosen from nonnegative value in order to keep the monotonicity of Λ0(t). Since

k = knots + degree − 2, we can fully determine the k spline basis functions if the knots

and degree are specified. Knots, which determine the shape of the monotone splines, can

be specified through a sequence of increasing points within a finite interval of the minimum

and maximum of the censoring times. Degree, which determines the smoothness of the

monotone splines, can be specified with linear (degree = 1), quadratic (degree = 2) and

cubic functions (degree = 3), respectively. The number of knots are very important when

we use monotone splines of Ramsay [47] to model Λ0(·), since a large number of knots may

lead to the over-fitting of the Λ0(·), and a small number of knots may cause the ill-fitting

of the Λ0(·). Recommended by Lin and Wang [33], Wang and Dunson [57], Cai et al. [8],
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and McMahan et al. [37], a moderate number (10-30) of equally-spaced knots will be used

in our study.

After modeling Λ0(Yieβ
′Zi) through monotone splines of Ramsay [47], the log-likelihood

function (5.7) can be rewritten as

ls(α,β, d,γ|Oi) =
n∑
i=1

{
δi(log[π(Xi)] +α′Zi)− δi

k∑
l=1

γlIl(Yieβ
′Zi)e(α−β)′Zi

+ δi log[
k∑
l=1

γlMl(Yieβ
′Zi)] + (1− δi) log[1− π(Xi)

+ π(Xi)e−
∑k

l=1 γlIl(Yie
β′Zi )e(α−β)′Zi ]

}
(5.9)

where Ml(·) is a set of basis splines. Then the unknown parameters α, β, d, and γ can be

obtained directly by maximizing equation (5.9). We estimate the variance of the estimated

parameters based on the resampling technique.

5.5 Simulation Study

The performance of the proposed method for our proposed EH mixture cure model will

be investigated through simulation studies. Similar to the study of Tseng et al. [55], we

will generate 1,000 simulation datasets with a sample size of 200 and 400, and the baseline

hazard function for the uncured patients is from a log-logistic distribution:

λ0(t) =
b
a( ta)b−1

1 + ( ta)b
(5.10)

4 where a = 120 and b = 4. In our simulation study, we choose the true value of α and

β as (−1,−1)′ and (−0.5,−0.5)′ for the EH mixture cure model, (−1,−1)′ and (0, 0)′ for

the EH mixture cure model, called restricted PH (RPH) mixture cure model, (−1,−1)′

and (−1,−1)′ for the EH mixture cure model, called restricted AFT (RAFT) mixture

cure model, respectively. The covariates are Z = (Z1,Z2)′, where Z1 is generated from

standard normal distribution, and Z2 is generated from Bernoulli distribution with success

probability of 0.5. In the logistic link function π(X), the true values of the parameter d is

(2,−1)′, and the covariates are set as X = (X1,X2)′, where X1 and X2 are from constant

1 and Bernoulli distribution with success probability of 0.5, respectively. Censoring times
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are generated from an exponential distribution with different means to obtain 35% and 55%

censoring rates. Recommended by Lin and Wang [33], Wang and Dunson [57], Cai et al.

[8], and McMahan et al. [37], we will choose the number of knots as 30, and the degree as

2 to control the smoothness of the splines. γ will be given some equal nonnegative values.

Table 5.1 Bias, SE, SD and CP of α̂1, α̂2, β̂1, β̂2, d̂1 and d̂2 of 500 simulated data
sets with a sample size of 200 and 400 from the EH mixture cure model

n Censoring Rate (%) Parameters Bias SE SD CP
200 35 α1 0.0084 0.0624 0.0522 0.965

α2 0.0089 0.0589 0.0476 0.961
β1 0.0058 0.0363 0.0387 0.963
β2 -0.0301 0.0576 0.0610 0.948
d1 -0.0129 0.0505 0.0490 0.949
d2 -0.0176 0.0584 0.0544 0.951

55 α1 -0.0256 0.0797 0.0782 0.940
α2 0.0180 0.0653 0.0797 0.948
β1 0.0093 0.0391 0.0412 0.956
β2 -0.0363 0.0864 0.0863 0.949
d1 -0.0024 0.0606 0.0655 0.946
d2 -0.0101 0.0654 0.0730 0.958

400 35 α1 0.0080 0.0525 0.0462 0.954
α2 0.0020 0.0432 0.0333 0.974
β1 0.0023 0.0284 0.0322 0.957
β2 -0.0284 0.0520 0.0526 0.949
d1 -0.0100 0.0411 0.0359 0.961
d2 -0.0146 0.0493 0.0445 0.968

55 α1 -0.0172 0.0711 0.0666 0.943
α2 0.0052 0.0606 0.0636 0.955
β1 0.0091 0.0335 0.0365 0.961
β2 -0.0314 0.0724 0.0696 0.962
d1 -0.0106 0.0569 0.0640 0.942
d2 -0.0176 0.0641 0.0594 0.959

The bias, standard error (SE), standard deviation (SD) and coverage probability (CP)

of α̂1, α̂2, β̂1, β̂2, d̂1 and d̂2 of 500 simulated data sets with a sample size of 200 and

400 from the EH mixture cure model, RPH mixture cure model, and RAFT mixture cure

model are computed, and the results are shown in Tables 5.1-5.3. The results from the

EH mixture cure model, seen in Table 5.1, show that when the censoring rate is 35%, the
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biases, standard errors, and standard deviations of α̂1, α̂2, β̂1, β̂2, d̂1 and d̂2 tend to decrease

along with the increase of sample size from 200 to 400. For example, with the censoring

rate of 35%, the bias, standard error, and standard deviation of α̂1 are (0.0084, 0.0624,

0.0522) for the sample size 200, and (0.0080, 0.0525, 0.0462) for the sample size 400. While

the censoring rate is 55%, the biases, standard errors, and standard deviations of α̂1, α̂2,

β̂1, and β̂2 tend to decrease with the increase of sample size from 200 to 400. Along with

the increase of the censoring rate from 35% to 55%, the biases of α̂1, α̂2, β̂1, and β̂2, and

all the standard errors or standard deviations tend to increase. The standard deviations

and standard errors are very similar and the coverage probabilities are close to 95%, which

shows that our estimation method works well for the EH mixture cure model.

Table 5.2 Bias, SE, SD and CP of α̂1, α̂2, β̂1, β̂2, d̂1 and d̂2 of 500 simulated data
sets with a sample size of 200 and 400 from the RPH mixture cure model

n Censoring Rate (%) Parameters Bias SE SD CP
200 35 α1 0.0112 0.0473 0.0449 0.962

α2 0.0013 0.0426 0.0349 0.969
β1 -0.0138 0.0243 0.0247 0.939
β2 -0.0246 0.0368 0.0397 0.937
d1 -0.0138 0.0404 0.0382 0.952
d2 -0.0176 0.0497 0.0484 0.952

55 α1 -0.0171 0.0538 0.0597 0.939
α2 0.0160 0.0470 0.0443 0.945
β1 -0.0330 0.0541 0.0592 0.932
β2 -0.0677 0.0923 0.1036 0.902
d1 -0.0015 0.0487 0.0471 0.949
d2 -0.0101 0.0532 0.0607 0.944

400 35 α1 0.0110 0.0383 0.0354 0.955
α2 -0.0007 0.0307 0.0240 0.972
β1 -0.0113 0.0210 0.0239 0.947
β2 -0.0205 0.0339 0.0326 0.942
d1 -0.0134 0.0347 0.0333 0.942
d2 -0.0156 0.0442 0.0366 0.963

55 α1 -0.0112 0.0515 0.0485 0.959
α2 0.0087 0.0468 0.0506 0.959
β1 -0.0232 0.0372 0.0372 0.937
β2 -0.0516 0.0824 0.0789 0.930
d1 -0.0154 0.0510 0.0620 0.941
d2 -0.0202 0.0597 0.0678 0.937
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Table 5.3 Bias, SE, SD and CP of α̂1, α̂2, β̂1, β̂2, d̂1 and d̂2 of 500 simulated data
sets with a sample size of 200 and 400 from the RAFT mixture cure model

n Censoring Rate (%) Parameters Bias SE SD CP
200 35 α1 -0.0087 0.0631 0.0587 0.950

α2 0.0145 0.0582 0.0514 0.964
β1 0.0346 0.0558 0.0687 0.948
β2 -0.0232 0.0635 0.0628 0.954
d1 -0.0080 0.0519 0.0483 0.952
d2 -0.0138 0.0603 0.0582 0.954

55 α1 -0.0629 0.1037 0.1073 0.914
α2 0.0171 0.0794 0.0773 0.965
β1 0.0277 0.0559 0.0664 0.934
β2 -0.0354 0.0882 0.1002 0.953
d1 0.0032 0.0782 0.0677 0.967
d2 -0.0100 0.0798 0.0770 0.958

400 35 α1 -0.0068 0.0518 0.0537 0.945
α2 0.0132 0.0446 0.0486 0.953
β1 0.0286 0.0489 0.0545 0.944
β2 -0.0224 0.0569 0.0590 0.952
d1 -0.0069 0.0437 0.0433 0.958
d2 -0.0119 0.0540 0.0551 0.955

55 α1 -0.0437 0.0917 0.0823 0.942
α2 0.0037 0.0668 0.0614 0.965
β1 0.0258 0.0491 0.0617 0.936
β2 -0.0346 0.0779 0.0753 0.957
d1 -0.0092 0.0653 0.0592 0.965
d2 -0.0168 0.0697 0.0636 0.957

The proposed estimation method also performs well in the RPH mixture cure model,

and the results have been shown in Table 5.2. With the increase of sample size from 200

to 400, all the biases, standard errors and standard deviations tend to decrease under the

censoring rate of 35%. When the censoring rate is 55%, the biases and standard errors of

α̂1, α̂2, β̂1, and β̂2 tend to decrease with the increase of sample size from 200 to 400. When

the censoring rate increases from 35% to 55%, the biases, standard errors and standard

deviations of α̂1, α̂2, β̂1, and β̂2 tend to increase. For example, with the sample size

200, the bias, standard error and standard deviation of α̂2 are (0.0013, 0.0426, 0.0349)

for censoring rate 35%, and (0.0160, 0.0470, 0.0443) for censoring rate 55%. Similar to
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the results shown for the EH mixture cure model, the standard errors and the standard

deviations are comparable, and the coverage probabilities are also close to 95% under the

RPH mixture cure model.

Table 5.3 displays the results of the bias, standard error, standard deviation and cov-

erage probability of α̂1, α̂2, β̂1, β̂2, d̂1 and d̂2 from the RAFT mixture cure model. The

results reveal that along with the increase of the sample size from 200 to 400, all the biases,

standard errors and standard deviations decrease when the censoring rate is 35%. For ex-

ample, under the censoring rate 35%, the bias, standard error, and standard deviation of β̂2

are (-0.0232, 0.0635, 0.0628) for the sample size 200, and (-0.0224, 0.0569, 0.0590) for the

sample size 400. When the censoring rate is 55%, the biases, standard errors and standard

deviations of α̂1, α̂2, β̂1 and β̂2 decrease along with the increase of sample size from 200

to 400. The patterns for the biases of α̂1, α̂2, β̂1, β̂2, d̂1 and d̂2 may not change regularly

when the censoring rate changes from 35% to 55%. In comparison, all the standard errors

and standard deviations increase when the censoring rate increases from 35% to 55%. The

fact that the standard errors are close to the standard deviations, and that the coverage

probabilities are close to 95%, show that our proposed estimation method is valid for the

RAFT mixture cure model.

5.6 Real Data Analysis

For illustration, we apply our proposed estimation method and proposed EH mixture cure

model to the melanoma data from the ECOG phase III clinical trial E1684 and the leukemia

data from bone marrow transplant study. There are a total number of 284 observations

for the melanoma data after deleting the missing value. This phase III clinical trial E1684

aimed to compare the high dose interferon alpha-2b (IFN) regimen group with the placebo

group. The dependent variable in the melanoma data is relapse-free survival in years, which

is defined as the time to death or relapse after randomization. Censoring indicator is defined

as 1 if death or relapse of patients happen, and as 0 if patients do not die or relapse. Similar

to Cai et al. [9], three risk factors are considered for our study, including treatment (0 =

control, 1 = treatment), sex (0 = male, 1 = female) and age (continuous variable which is
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centered to the mean). We investigate the effects of treatment, sex and age on the cure rate

of cured patients as well as the failure time of uncured patients through the PH mixture

cure model [9] and our proposed EH mixture cure model. The standard errors of estimates

are obtained using the bootstrap method based on 500 bootstrap samples.

Table 5.4 Estimates, SE and P values of estimated parameters for the melanoma
data from the ECOG phase III clinical trial E1684 under the PH mixture cure model

PH Mixture Cure Model Parameter Estimate SE P values
Latency Part Treatment -0.1536 0.1721 0.3722

Sex 0.0995 0.1908 0.6022
Age -0.0077 0.0067 0.2523

Incidence Part Treatment -0.5885 0.3065 0.0548
Sex -0.0870 0.3291 0.7916
Age 0.0203 0.0145 0.1593

Table 5.5 Estimates, SE and 95% confidence intervals of estimated parameters for
the melanoma data from the ECOG phase III clinical trial E1684 under the EH
mixture cure model

EH Mixture Cure Model Parameter Estimate SE 95% CI
Latency Part α

Treatment -0.1556 0.1762 (-0.5010, 0.1898)
Sex 0.0909 0.1935 (-0.2882, 0.4701)
Age -0.0063 0.0049 (-0.0160, 0.0033)
β

Treatment -0.0577 0.0366 (-0.1293, 0.0140)
Sex -0.1243 0.0593 (-0.2405, -0.0082)
Age 0.0078 0.0024 (0.0031, 0.0124)

Incidence Part d
Treatment -0.5862 0.5082 (-1.5822, 0.4099)

Sex -0.1005 0.3954 (-0.8756, 0.6745)
Age 0.0048 0.0089 (-0.0126, 0.0222)

Table 5.4-5.5 display estimates, standard errors and 95% confidence intervals or P values

of estimated parameters for the melanoma data under the PH mixture cure model and the

EH mixture cure model. From the results, we can see that treatment, sex and age all

have no significant effects on either the cure rate of cured patients or the failure time to
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Table 5.6 Estimates, SE and P values of estimated parameters for the bone
marrow transplant data under the AFT mixture cure model

AFT Mixture Cure Model Parameter Estimate SE P values
Latency Part Treatment -0.3531 0.2706 0.1919

Incidence Part Treatment 0.4273 0.4844 0.3776

Table 5.7 Estimates, SE and 95% confidence intervals of estimated parameters for
the bone marrow transplant data under the EH mixture cure model

EH Mixture Cure Model Parameter Estimate SE 95% CI
Latency Part α

Treatment -0.2812 0.2947 (-0.8588, 0.2964)
β

Treatment -0.4254 0.2955 (-1.0046, 0.1537)
Incidence Part d

Treatment 0.3090 0.5281 (-0.7261, 1.3442)

death or relapse of uncured patients under the PH mixture cure model, since all the p

values are greater than 0.05. Furthermore, the results from the EH mixture cure model

also show that treatment, sex and age all have no significant effects on the cure rate of

cured patients, since 95% confidence intervals of all the three covariates in the incidence

part contain zero. However, treatment, sex and age do not all have no significant effects on

the failure time to death or relapse of uncured patients in the latency part: treatment, sex

and age in the relative hazard part have no significant effects on the failure time to death

or relapse of uncured patients, since their 95% confidence intervals contain zero; treatment

in the baseline hazard part has no significant effect on the failure time to death or relapse

of uncured patients, since the 95% confidence interval includes zero, while sex and age in

the baseline hazard part have significant effects on the failure time to death or relapse of

uncured patients, since their 95% confidence intervals are (-0.2405, -0.0082) and (0.0031,

0.0124), respectively.

The leukemia data from the bone marrow transplant study has been widely investigated

through the AFT mixture cure model, since the PH assumption is not appropriate for

the latency distribution [9, 43, 65, 71]. Among the 91 patients who had been treated with
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high-dose chemoradiotherapy in the bone marrow transplant study, 46 patients were in

the allogeneric marrow group and 45 patients were in the autologous marrow group. The

response variable in the leukemia data is time to death. Censoring indicator is defined as 1

if patients died and as 0 if patients did not die. Treatment (1 is for autologous treatment

group and 0 is for allogeneic treatment group) is the only covariate we consider in the

models. Since we are interested in examining whether the treatment has significant effects

on the cure rate of cured patients and the failure time to death of uncured patients, we

apply both the AFT mixture cure model [9] and our proposed EH mixture cure model to

fit the leukemia data. The standard errors of estimates are obtained using the bootstrap

method based on 200 bootstrap samples.

Table 5.6-5.7 display estimates, standard errors and 95% confidence intervals or P values

of estimated parameters for the leukemia data under the AFT mixture cure model and the

EH mixture cure model. The results obtained from the AFT mixture cure model show that

treatment has no significant effects on either the cure rate of cured patients or the failure

time to death of uncured patients, since all the p values are greater than 0.05. Similarly,

the EH mixture cure model results also show that treatment has no significant effects on

either the cure rate of cured patients or the failure time to death of uncured patients, since

all the 95% confidence intervals include zero. The fact that the estimate of treatment in the

relative hazard part is -0.2812 and the estimate of treatment in the baseline hazard part

is -0.4254 shows that they are not exactly equivalent, which may violate the assumption

of the AFT mixture cure model. Therefore, the AFT mixture cure model may not be a

better model to fit the leukemia data, even though the conclusions are similar from either

the AFT mixture cure model or the EH mixture cure model.

5.7 Discussion and Conclusion

In this chapter, we have proposed an EH mixture cure model and its corresponding estima-

tion method based on monotone splines of Ramsay. The EH mixture cure model is a very

useful extension of both the PH mixture cure model and the AFT mixture cure model. It

has been shown that the EH mixture cure model is more flexible than either the PH mixture
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cure model or the AFT mixture cure model, since it incorporates a logistic regression for

the incidence part and an EH model for the latency part of the mixture cure model. Our

simulation studies show that the proposed estimation method performs well when estimat-

ing the regression parameters in the EH mixture cure model, the RPH mixture cure model

and the RAFT mixture cure model.

The real data results also show that our proposed estimation method performs well, and

our proposed EH mixture cure model outperforms either the PH mixture cure model or the

AFT mixture cure model. The first reason is that not only the similar conclusions for the

incidence part in either the PH mixture cure model or the AFT mixture cure model can be

obtained from the EH mixture cure model, but also more details in the latency part can be

obtained from the EH mixture cure model than either the PH mixture cure model or the

AFT mixture cure model, to reveal the accurate association of interested covariates with

the failure time of uncured patients. The second reason is that there is no need to check

either the PH assumption or the AFT assumption when we apply our proposed EH mixture

cure model to the real data, compared with using either the PH mixture cure model or the

AFT mixture cure model.

Therefore, our proposed EH mixture cure model is more efficient and flexible than either

the PH mixture cure model or the AFT mixture cure model, and we recommend using our

proposed EH mixture cure model to fit the survival data with cure information without

knowing either the PH assumption or the AFT assumption.
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Chapter 6

Conclusions and Future Work

In this dissertation, we have discussed variety survival models, and their estimation proce-

dures. The details are illustrated through: (1) Semiparametric estimations for the AP-AFT

model; (2) Profile likelihood based estimation method for the AFT mixture model with la-

tent subgroups; (3) Spline based estimation method for the EH Model; (4) Spline based

estimation method for the EH mixture cure model.

In the first project, we propose an AP-AFT model and its corresponding estimation

methods based on either the rank-smooth method or profile likelihood method. Our sim-

ulation studies show that the performance of the proposed estimation methods are valid.

Comparing to the rank-like estimation method, the proposed rank-smooth method using the

smoothing technique for variance calculation instead of resampling technique in the rank-

like method, improves the computational time. Comparing to the rank-smooth method,

the profile likelihood based estimation method is easy and straightforward to evaluate the

variance of estimated parameters. Due to the burden of computing, we suggest using the

rank-smooth estimation method when the sample size is huge, and utilizing either the

rank-smooth estimation method or the profile likelihood based estimation method when

the sample size is moderate.

In the second project, we develop the EM algorithm based estimation method for the

AFT mixture model with latent subgroup. Our simulation studies show that the proposed

method outperforms the E-BJ algorithm based estimation method regarding to the variance

estimation.

The third project aims to develop the estimation method for the EH model based on

the monotone splines. The simulation results indicate the spline based estimation method
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is valid and flexible. Comparing to the existed profile likelihood estimation method, the

proposed estimation method is better in calculating variance of estimated parameters.

We extend the discussion of the EH model to the EH mixture cure model in the fourth

project, which is more flexible than either the PH mixture cure model or the AFT mixture

cure model. The EH mixture cure model has following advantages in practice: (1) There

is no need to check either the PH assumption or the AFT assumption when we apply the

EH mixture cure model to the real data; (2) The latency part of the mixture cure model

is modelled with the EH model, which has the nested structure of both the PH model and

the AFT model. The estimation method for EH mixture cure model is developed based on

the monotone splines. The bootstrap method is used to estimate the variance of estimated

parameters. The simulation studies illustrate the good performance of the proposed model.

Finally, we recommend using our proposed EH mixture cure model to the survival data

with cure information without knowing either the PH assumption or the AFT assumption.

All estimation methods discussed in the dissertation are about right censored survival

data. However, in the real situation, the survival data may be interval censored. Therefore,

one of future direction may aim to extend the proposed models and estimation methods

to the interval censored data. Furthermore, in the third and fourth project, we use the

resampling technique to evaluate variance of estimated parameters, but this is often time-

consuming. Therefore, we would like to investigate more advanced techniques to estimate

the variance of parameters in the future. Finally, work in the future may include construct-

ing a goodness-of-fit test for either the EH model or the EH mixture cure model to check

the fit of models.
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